
quickQuote
A web application to investigate the use of video

in the newsroom

UCL Msc CS Project Report

COMPGC99G Individual Project

Pietro Passarelli

01-09-2015

Student ID Internal Supervisor:

947720 Dr. Graham Roberts, UCL

 External Supervisor:

 Ben Whitelaw, Times & Sunday Times

This report is submitted as part requirement for the MSc Computer Science degree at
UCL. It is substantially the result of my own work except where explicitly indicated in
the text.

The report may be freely copied and distributed provided the source is explicitly
acknowledged.

2

Abstract

For journalists working on a news article for the web, embedding a video quote is a
time-consuming activity and this often leads to the video not being included in the
article altogether. The aim of this project is to produce a web application that can
facilitate this process.

An investigation into the problem domain of working with video in a newsroom was
carried out and a number of rapid prototypes were built using an iterative approach.
Where speech-to-text, NLP APIs and ways to model a hyper-transcript were
explored.

The project resulted in a working application that provides a comprehensive solution
for journalists to be able to quickly find and export a video quote to embed in a news
article.

Project page: http://times.github.io/quickQuote

3

Candidate Number or Name: 947720 – Pietro Passarelli

This student is registered as dyslexic / dyspraxic with UCL Student Disability
Services.

Please refer to marking guidelines at:
http://www.ucl.ac.uk/disability/information-for-staff/dyslexiamarkingguidelines

4

CONTENTS'

1.! INTRODUCTION'...'8!
1.1.! OUTLINE'THE'PROBLEM'...'8!
1.2.! AREA'OF'INTEREST'...'8!
1.3.! THE'CHALLENGES'...'9!
1.3.1.! INVESTIGATION!OF!THE!PROBLEM!..!9!
1.3.2.! A!COMPREHENSIVE!SOLUTION!...!9!
1.3.3.! VIDEO!TRANSCRIPTIONS!...!10!
1.3.4.! THE!OUTPUT!...!10!
1.4.! AIMS'AND'GOALS'..'10!
1.4.1.! AIMS!..!10!
1.4.2.! GOALS!...!11!
1.5.! OVERVIEW'OF'THE'PROJECT'..'11!
1.5.1.! 1.PRELIMINARY!RESEARCH!..!12!
1.5.2.! 2.HYPOTHESIS!AND!PROTOTYPE!..!12!
1.5.3.! 3.IMPLEMENTATION!..!12!
1.6.! OVERVIEW'OF'REPORT'...'12!

2.! CHAPTER'2'CONTEXT'..'14!
2.1.! BACKGROUND'INFORMATION'..'14!
2.1.1.! NEWSROOM!CHALLENGES!..!14!
2.1.2.! V.A.R.K.!...!14!
2.2.! RELATED'WORK'AND'SIMILAR'SOLUTIONS'..'15!
2.2.1.! SIMILAR!SOLUTIONS!...!15!
2.2.2.! RELATED!WORK!...!24!
2.3.! RESEARCH'DONE'...'26!
2.4.! TOOLS'AND'SOFTWARE'SELECTED'FOR'USE'IN'THE'PROJECT'...'26!
2.4.1.! INTRO!TO!SOFTWARE!...!26!
2.4.2.! DEPLOYMENT!..!28!
2.5.! TOOLS'..'28!
2.6.! SUMMARY'..'28!

3.! INVESTIGATION'...'29!
3.1.! BACKGROUND:'THE'TIMES'BUILD'THE'NEWS'HACKATHON'..'29!
3.2.! RESEARCH'OF'THE'TECHNOLOGY'STACK'...'30!
3.3.! BBC'HACKATHON'NEWSHACK'..'30!
3.4.! VIDEO'ANALYSER'PROTOTYPE'..'32!
3.4.1.! BASELINE!PROJECT!..!32!
3.4.2.! NLP!ANALYSES!...!33!
3.4.3.! NLP!ANALYSES!USE!CASE!..!34!
3.5.! QUICKQUOTE'F'A'VIDEO'QUOTE'EXTRACTOR'...'35!
3.5.1.! THE!HYPOTHESIS!..!35!
3.5.2.! THE!PROOF!OF!CONCEPT!PROTOTYPE!...!35!

5

3.5.3.! USER!STAKE!HOLDER!FEEDBACK!..!36!
3.5.4.! REFACTORING!AND!IMPLEMENTATION!..!38!
3.6.! SUMMARY'..'39!

4.! REQUIREMENTS'AND'ANALYSIS'..'40!
4.1.! PROBLEM'STATEMENT'...'40!
4.2.! LIST'OF'REQUIREMENTS'...'40!
4.3.! USER'JOURNEYS'..'41!
4.4.! RESULT'OF'REQUIREMENTS'ANALYSES'...'42!
4.4.1.! MODELING!TRANSCRIPTIONS!...!42!
4.5.! SUMMARY'..'45!

5.! DESIGN'AND'IMPLEMENTATION'..'46!
5.1.! RAILS'MODEL'CLASSES'...'46!
5.1.1.! USER!CLASS!...!46!
5.1.2.! VIDEO!CLASS!..!47!
5.1.3.! TRANSCRIPTION!CLASS!...!47!
5.1.4.! LINE!CLASS!..!47!
5.1.5.! WORD!CLASS!...!48!
5.1.6.! QUOTE!CLASS!..!48!
5.2.! DATABASE'...'49!
5.3.! COMPONENTS'..'49!
5.3.1.! THIRD!PARTY!COMPONENTS!..!49!
5.3.2.! SPOKENDATA!API!SDK!..!50!
5.3.3.! HYPERETRANSCRIPT!...!50!
5.3.4.! SELECTABLE!QUOTES!..!55!
5.3.5.! PREVIEW!SELECTION!...!56!
5.3.6.! EXPORT!SELECTION!...!56!
5.4.! SERVER'SIDE'DEPLOYMENT'...'58!
5.5.! SUMMARY'..'59!

6.! TESTING'...'60!
6.1.! IDENTIFYING'MOST'IMPORTANT'COMPONENTS'...'60!
6.1.1.! OVERVIEW!OF!SYSTEM!..!60!
6.1.2.! IDENTIFYING!THE!MOST!IMPORTANT!COMPONENTS!..!60!
6.2.! TESTING'USER'JOURNEYS'...'61!
6.2.1.! AUTOMATIC!TESTING!E!SELENIUM!..!61!
6.2.2.! MANUAL!TESTING!..!62!
6.3.! UNIT'TESTING'...'64!
6.3.1.! TESTING!THE!VIDEO!MODEL!..!65!
6.3.2.! TESTING!THE!SPOKEN!DATA!API!SDK!..!66!
6.4.! SUMMARY'..'67!

7.! CONCLUSIONS'AND'PROJECT'EVALUATION'...'68!
7.1.! SUMMARY'OF'WHAT'THE'PROJECT'HAS'ACHIEVED'...'68!

6

7.2.! CRITICAL'EVALUATION'OF'THE'PROJECT'..'68!
7.2.1.! INVESTIGATION!OF!THE!PROBLEM!..!68!
7.2.2.! A!COMPREHENSIVE!SOLUTION!..!69!
7.2.3.! VIDEO!TRANSCRIPTIONS!...!69!
7.2.4.! OUTPUT!..!69!
7.3.! FUTURE'WORK'...'70!
7.3.1.! ADD!SUPPORT!FOR!AUDIO!FILE!...!70!
7.3.2.! HTML5!VIDEO,!OGG!AND!WEBM!...!70!
7.3.3.! TWITTER!EXPORT!...!70!
7.3.4.! RESTRICT!ACCESS!TO!@TIMES.CO.UK!ADDRESSES!..!70!
7.3.5.! MORE!TESTS!..!70!
7.4.! WRAPFUP'..'70!

8.! SYSTEM'MANUAL'..'72!
8.1.! PREREQUISITE'..'72!
8.2.! SYSTEM'DEPENDENCIES'..'72!
8.3.! CONFIGURATION'...'73!
8.3.1.! API!KEYS!..!73!
8.3.2.! ADD!API!KEYS!TO!PROJECT!..!75!
8.4.! HOW'TO'RUN'THE'TEST'SUITE'..'76!
8.5.! DATABASE'CREATION'F'FOR'LOCAL'DEVELOPMENT'AND'TESTING.'......................................'77!
8.6.! DEPLOYMENT'INSTRUCTIONS'..'77!

9.! USER'MANUAL'..'78!
9.1.! LOGIN'..'78!
9.2.! UPLOADING'A'VIDEO'...'79!
9.3.! VIEWING'VIDEOS'...'80!
9.4.! HYPERTRANSCRIPT'..'80!
9.4.1.! SEARCH!VIDEO!..!80!
9.4.2.! CLICKABLE!TRANSCRIPTION!...!81!
9.5.! SELECT'A'QUOTE'...'82!
9.5.1.! EDIT!A!QUOTE!..!83!
9.6.! PREVIEW'...'84!
9.7.! EXPORT'...'86!
9.7.1.! EMBEDDING!THE!CODE!..!87!

10.! OUTLINE'OF'PHASES'...'90!

11.! INTERNSHIP'TIMELINE'...'91!

12.! ABOUT'RUBY'ON'RAILS'MVC'..'92!

13.! RAILS'AND'CLIENT'SIDE'INTERACTIVITY'WITH'AJAX'...'94!

14.! TEST'RESULTS'AND'TEST'REPORTS'..'96!
14.1.! VIDEO'MODE'UNIT'TESTS'...'96!

7

15.! CODE'LISTING'..'97!
15.1.! PARSING'SRT'FILE'INTO'HYPERTRANSCRIPT'DATA'STRUCTURE'..'97!
15.2.! SAVE_QUOTE_WITH_VIDEO_SNIPPET'..'98!
15.3.! SPOKEN'DATA'RUBY'SDK'..'99!
15.4.! DEPLOYMENT'SCRIPT'..'103!
15.4.1.! DEPLOY.SH!..!103!
15.4.2.! FIRST_TIME_DEPLOY.SH!...!104!
15.4.3.! NEW_DEPLOY.SH!...!105!

16.! HYPERTRANSCRIPT'..'106!
16.1.1.! HYPER!AUDIO!CONVERTER!ALGORITH!ANALYSES!AND!REFACTORING.!...............................!106!
16.1.2.! HYPER!AUDIO!CONVERTER!JS!..!106!
16.1.3.! CODE!ANALYSES!..!106!
16.1.4.! REFACTORING!IN!RUBY!..!111!

17.! SELENIUM'AUTOMATED'TEST'OF'VIDEO'UPLOAD.'...'113!
17.1.1.! OVERVIEW!OF!HOW!SELENIUM!WORKS!...!113!
17.1.2.! SELENIUM!TEST!..!114!

18.! USING'MULTIPACK'IN'HEROKU'DEPLOYMENT'TO'INSTALL'FFMPEG'...........'116!

19.! BIBLIOGRAPHY'..'117!

8

1. INTRODUCTION

1.1. Outline the problem

For a journalist working on a news article for the web, embedding a video quote is a
time-consuming activity and this often leads to the video not being included in the
article altogether.

There are many reasons for wanting to add a video clip of the quote to an article.
This can add elements of non-verbal communication to the narrative of the written
piece, in addition to giving depth to the quote and the tone of the speaker. The video
can provide the emotional charge behind the words and contribute to a vastly richer
user experience. This gives the reader a full understanding of every dimension of the
quote, ie, the context, tone, emotion, humour etc. Without this, the viewer reads only
the words and the full depth of the quote is not fully communicated. Essentially,
adding video clips to quote lines ensures that no depth of meaning and content of the
words behind the quote is missed by the user. For example, a written piece about
quotes from a public figure such as Donald Trump, there is only so much a viewer
can grasp by reading a quote such as:

“A five billion dollar web site, I have so many websites, I have them all over
the place. I hire people they do a web site, it costs me three dollars.” (CNN
2015)

This quote was in criticism of a healthcare website and was said in a tongue-in-cheek
tone with elements of humour and outrage. These elements are not immediately
obvious to the user without seeing the video clip and how Donald Trump expressed
himself.

In the current work-flow, once the journalist has the video file, they would have to find
the quote, which often entails manually scrubbing through the video in search of that
one usable sound bite, which can be something like finding a needle in a haystack,
particularly if the video is lengthy. Additionally, transcriptions are not a viable option
either, as often there is no time to wait for them or no budget, and without time-
codes, transcriptions do not help to speed up the process (Passarelli 2015).

In a fast paced newsroom often there is no time for such a time-consuming process.

The aim of this project is to produce a web application that can maximise not only the
depth of content but also the speed in which the content is produced.

1.2. Area of Interest

One reason why this project is interesting is because it utilises the new possibilities
that have opened up with the introduction of the HTML5 video tag. As well as the

9

opportunities that have arisen in combining this with the increasing quality of speech
to text technologies.

Traditionally video and audio have been like black boxes on the web, often having to
recur to flash to provide video capabilities to pages.

With the introduction of the HTML5 video tag, Javascript libraries like videos make it
easier to manipulate the video, treating it as a Javascript object. However this turns
the video into “a ‘black box’ we can do something with, such as triggering events at
defined timecodes. It does not allow us to directly obtain the content of the video in a
programmatic way and to manipulate the result. An example would be to take from
the video the content of the quote and then analyse this to identify keywords and key
topics. Another example would be to search what has been said in the video, find the
quote and trim the video segment accordingly.

I believe it is by combining video with its corresponding timecoded transcription that
we can provide a direct programmatic solution.

1.3. The Challenges

There were two main challenges for this project. The first was centered around
investigating the problem of how working with video and transcriptions in the
newsroom could lead to an increase of time-consuming multimedia production. The
second main challenge was then identifying an appropriate solution.

1.3.1. Investigation of the Problem

Investigating and defining the problem was one of the first challenges. The initial
problem-hypothesis was formulated around researching ways to make working with
video in the newsroom easier and faster. Identifying the set-backs journalists have
was difficult because they themselves did not fully know what they were. This is
discussed further in the investigation chapter, which outlines how through a series of
proof-of-concept prototypes and discussions with journalists and newsroom stake
holders, it emerged that a the lack of a system to quickly extract video quotes was
the problem and it was the solution to this problem that was the second stage of the
challenge.

1.3.2. A Comprehensive Solution

One of the challenges around this project is providing a comprehensive work-flow for
the journalist and the user that is clear and easy to follow through from beginning to
end, without requiring any training.

10

1.3.3. Video Transcriptions

The fastest way to be able to quickly select a caption from a video, is to search a
transcription of that video. Therefore a challenge was to research and identify the
most appropriate system to get the transcription of any given video. Human
generated transcriptions were not an option because of time and resource
constraints. Automated transcriptions needed to meet a certain threshold of
acceptance from the user, as well as have accurate timecodes in order to be
searchable and in sync with the video for quick feedback.

1.3.4. The Output

The output of the video quote selection system will be a text quote with the
corresponding video clip associated with it. This needs to be something journalists
can easily add to their news article with minimal or no configuration. The system also
needs to be able to cut the original video source to trim it down to the video quote
selection as a HTML5 H264 MP4 video.

1.4. Aims and Goals

1.4.1. Aims

My aim for this project is to use an R&D approach to identify an appropriate solution
to an every day problem; that of using video and transcriptions in the context of
newsrooms to facilitate and increase their multimedia production for the web, as well
as develop a working web application proof of concept.

Additionally, throughout the process, an aspect of the project became to learn the
following technologies:

• Javascript/JQuery to manipulate the DOM to implement the front end logic of
the application.

• JSON and AJAX
• MVC design pattern of the Rails framework.
• Working with APIs, such as

– user authentication with google auth
– speech to text API

• Ruby Mine IDE
• How to model the domain of the application into back end classes, rails models,

efficiently.
• VideoJs and HTML5 Video
• Testing

– Acceptance test - Selenium
– Unit Test - RSpec

• FFMPEG to trim and transcode video.
• Deployment on Deis / Heroku

11

• Refactoring components from open-source projects that were using hyper-
transcript, with videojs and JQuery.

1.4.2. Goals

The main goal is to build a web application that makes extracting video quotes and
publishing them to news articles much easier.

Goals for this project are to;

• Investigate the problem in the newsroom around working with video and
prototype a compelling solution.

• build a web application that;
• given a video returns a searchable transcription in sync with the video.
• allows the user to select quotes

– allows the journalist user to preview their quote selection before exporting
– cut the video in the background once a quote selection is being exported.
– export the video quote clip as HTML5 MP4 H264

• produce a set of unit and acceptance tests to make the application as robust as
possible.

• deliver a system manual
• deliver a user manual
• provide code documentation
• open-source the project.

1.5. Overview of the Project

My personal preference for developing applications is to use a lean agile approach
(Eric Ries 2011) to software development, with an initial emphasis on researching
and identifying a problem solution, working closely with users and stake holders
through proof of concept paper sketches prototypes and research on existing user
practices and work-flows. As done during the course of the UCL Msc for GC02
industry project working with the Audava Start-up (Passarelli Pietro et al. 2015) and
for the Entrepreneurship module developing an autoEdit application (Passarelli Pietro
2015b).

However in the context of newsroom development at the Times and Sunday Times,
this was not always possible, as it was required to produce an interactive prototype to
demonstrate proof of concepts hypothesis to carry out what would be the equivalent
of the “customer development” phase in the lean approach (Maurya 2012).

Working within these constraints over the whole project took an iterative approach
with three main overarching phases:

12

1.5.1. 1.Preliminary Research

Identifying, researching and learning the technology stack. This consisted of
becoming familiarised with the Times & Sunday Times development team’s current
technology stack.

1.5.2. 2.Hypothesis and prototype

Investigating the problem domain of the application. Making hypotheses, prototyping
and investigating problems and solutions. Confront results with users and stake
holders.

In this phase, a bottom up approach was used to make a prototype and ensure the
core aspects of each component fully worked and integrated as a whole.

Once the appropriate problem and solution was identified, this was followed by a
rapid prototype phase, to confirm such solution with the users and stake holders, in
order to agree on user requirements, before moving on to implementation.

1.5.3. 3.Implementation

Followed by the final phase of re-factoring and implementation of the web
application.

In this phase a top down approach was used, with more care put on re-factoring code
into components.

A more detailed breakdown of the investigation carried out in this iterative process
can be found in the investigation chapter.

See appendix for outline of phases and internship timeline.

1.6. Overview of Report

Chapter 1, Introduction The first chapter outlines the problem investigated, the area
of interest, aims and goals and gives an overview of the project and the rest of the
report.

Chapter 2, Context The second chapter is concerned with providing context and
background research to the project, as well as sources, and similar solutions. It also
introduces the software.

Chapter 3, Investigation As mentioned, the project was built with an iterative
approach, investigating the optimal solution for a system that would allow journalists
to work more efficiently with video in their news article publications. This section
expands on the different phases of the R&D investigation.

13

Chapter 4, Requirements This chapter outlines the requirements for the final
iteration of the video quote extractor application, the problem statement, list of
requirements, use cases, and result of requirements analyses.

Chapter 5, Implementation The implementation of the application is discussed in
this chapter. Design, architecture, components design, database and implementation
details.

Chapter 6, Testing An overview of the testing strategy, the use of unit test and
acceptance testing is presented in this chapter and a summary of test results.

Chapter 7, Conclusion A summary of what the project has achieved, as well as
critical evaluation and recommendation for future work.

14

2. CHAPTER 2 CONTEXT

2.1. Background information

2.1.1. Newsroom Challenges

To best understand the challenges in developing software in a news environment,
the leaked New York Times Innovation report was referred to.

The biggest issue highlighted in the report was that flagship projects such as Snow
Fall (NY Times 2015, p36) were time consuming and a lot of effort went into the
making of a one-off piece with a relatively short life span.

“We have a tendency to pour resources into big one-time projects and work
through the one-time fixes needed to create them and overlook the less
glamorous work of creating tools, templates and permanent fixes that
cumulatively can have a bigger impact by saving our digital journalists time
and elevating the whole report. We greatly undervalue replicability.” (NY
Times 2015, p36)

The report also points out that the digital publication Quartz has a different approach:

“We are focused on building tools to create snow falls every day, and getting
them as close to reporters as possible. I’d rather have a snow-fall builder
then a snowfall.”

Kevin Delaney, editor of Quartz (NY Times 2015, p36)

The NY Times competitors such as BuzzFeed, were instead able to separate form
from content. The best example is a dialect quiz by the NY Times, that was widely
popular and BuzzFeed, inspired by the format made a “Quizz builder” and after the
first release, published 20 variations with minimal effort (NY Times 2015, p36). This
consideration of building a system rather then a one-off editorial piece was the initial
inspiration behind the making of the Interactive Debate Prototype at the Times Build
The News Hackathon, discussed in more detail in the investigation section.

2.1.2. V.A.R.K.

The other consideration that guided the project came from VARK, the idea of the
variety of learning styles (Neil Flemming 2015). Simply put, different people learn in
different ways. Five main learning styles are identified - visual, auditory, reading and
writing, kinaesthetic and multi-modal. The core concept is that each individual has
one (or more) preferred learning style. Additionally but also more crucially, the same
information can be delivered in different ways to meet the varying learning styles.
Applying this consideration to the publishing of news articles pushes us to reconsider

15

the use of multimedia to engage a wider audience, taking into account the variety of
learning styles.

This consideration guided many of the assumptions through the investigation up to
adding the corresponding video segment to a text quote in the final web application.

2.2. Related Work and Similar Solutions

2.2.1. Similar solutions

The following paragraphs consider similar solutions and different approaches to
working with video transcriptions on the web. These will be divided into tools and
editorial. Tools are those projects that allow the user to create something such as
providing a video and returning transcriptions. Editorials are projects that focus more
on the content and the delivery of information. Beginning with the editorial project, it
will soon become apparent in this context that they are often a starting point for
developing tools.

Editorial

Aljazeera(Debate(Obama(.(Romney(

Aljazeera Obama-Romney Debate - Mark Boas

In the ‘Aljazeera Debate Obama - Romney’ (Mark Boas 2012) the word-accurate
hyper-transcript was done manually.

What is interesting about this project is that it gives a way into the video, allowing the
user to search the text and provide some basic infographic through a pie chart. Then,
on the search terms, the user can see how many times the respective candidates
have mentioned a certain word.

16

The project is open sourced on github (Marb Boas 2013).

The code from this open source project was researched both at Build the News
Hackathon and at BBC Times News Hackathon, both of which are discussed in the
subsequent chapter of investigation. The major difference between the
implementation of the hyper-transcript in this project from the implementation in
quickQuote is that this project uses the popcornJs (Mozilla 2010) library and JPlayer
(Happyworm LTD 2009), while quickQuote uses videoJs (Brightcove Inc 2010) and
JQuery (jQuery Team 2006). This is discussed in more detail in further chapters.

In this project, it is also interesting that the developer inserted an “Easter egg” that
would let the user play only the sentences with a certain word in it, adding the query
in the URL ?k=economy&t=1000. Where “economy” could be any keyword, and t is
for the time interval, we wish to assign to each sentence.

http://www.aljazeera.com/indepth/interactive/2012/10/2012101792225913980.html?k
=economy&t=1000

(it seems to work best on Firefox)

However this was not made available as a function in the actual GUI of the
application.

This feature is similar to the video grep project discussed below.

Aljazeera(Obama(State(of(the(Union(Archive(
This project (Al Jazeera staff 2013) generalises the previous project at an archive
level. However, again, as far as I am aware, no automation was used to deal with the
transcriptions or the different video input.

Aljazeera Obama state of the Union - Mark Boas

This is where the idea for a system that could take a video and perform some kind of
analysis was formulated.

17

Another interesting aspect of this project, is that there is a section providing a
summary for each video.

Mandela(Speech(
The Times & Sunday Times published (Ændrew Rininsland 2013) a piece on a
Mandela speech, using the hyper audio pad (Mark Boas 2013a) on the back of
Aljazeera hyper-debates. However the transcription was done manually using the
programs VLC and Notepad and subsequently a software to make subtitles, adding
the text with in and out points, to then get an srt to convert to a hyper-transcript using
the Boas (Mark Boas 2013b) hyper-audio converter.

Mandela Hyper-transcript – Ændrew Rininsland

The piece used audio only. What is interesting about it from a user point of view, is
that the text changes colour as the audio is playing, which keeps the correspondence
between the order of the audio and the order of the text.

This interactive was built using the Doctop (Times Digital 2013) library to use a
Google doc as a back-end and Bootstrap (Twitter 2012) was used for the front-end.

However the project relying on Google doc as a backend was then affected by
Google changes in the API, which had the ability to break the project. A better
solution to making the most of using Google docs as a CMS would be to keep
Google docs in sync with a database that updates the application. This way, if the
connection between the database and Google docs were to drop due to changes in
the API, the front end of the application would not be effected.

Tools

F5(Transcription(

18

F5 is a transcription tool (Thorsten Pehl, Thorsten Dresing 2010), made by German
academics. It enables the user to transcribe a video manually, with a convenient
interface which allows the application to provide timecode stamps on new line input.

F5 Transcriptions

F4(Analysis(
In subsequent versions of F5 they released F4 Analysis (Thorsten Pehl, Thorsten
Dresing 2013), which takes those same transcriptions and adds human tagging to it
for qualitative analyses.

What is notable about the idea of providing insight into text of transcription coding is
the content with tags and adding summary. This, however, is done manually by the
user. Something that arose during the investigation was an interest in automating this
part.

oTranscribe(
Made by newsroom developer at WSJ (Elliot Bentley 2013), oTranscribe is very
popular with journalists.

It facilitates transcriptions of video and audio, with intuitive interface and a few
keyboards short-cuts.

oTranscribe - WSJ

However, there is no automation of the transcription process.

YouTube(Captioning(
YouTube has a captioning service and clickable transcriptions. However their
transcription is mostly aimed at subtitles and even in the transcription view, it is not

19

word accurate, it is line accurate, perhaps because it uses the subtitle file generated
during the captioning to model the hyper-transcript.

YouTube Captioning Transcriptions

The advantage of YouTube automated captioning is that it is constantly improving
and becoming more and more accurate.

YouTube editor to edit captions

YouTube also provides an API (Google YouTube 2015b) to retrieve captions
although it is not clear how the user would go about retrieving automatically
generated captions through the API, as it requires a language to be set before the
caption is generated.

However, most importantly, the disadvantage is that in version two, Google
announced it was going to discontinue access to the captioning service through the
API, (Google YouTube 2015a) even though this is still available through version 3 of
the API (Google YouTube 2015b). Automatically generated transcriptions are a big
component of this project. Because of the rate at which speech to text technologies
are improving, it is difficult to predict which speech-to-text API is going to be the best
option long term. It was therefore decided to define an interface for the speech-to-text
API in order to be able to change the speech-to-text provider in the future, should the

20

service discontinue or a better solution is found. This concept is explored in more
depth in further chapters. Furthermore, the choice of not relying on Google/YouTube
is there, for there is no commitment on their part to maintaining this service as part of
the API long term.

Spoken(Data(
Despite YouTube captioning being used for a great part of the prototyping to get the
srt file of the transcription as an input to the application before integrating the speech-
to-text API component, when it came to implementing such components, it became
apparent that Spoken Data (Igor Szoke 2015) was a better fit.

Spoken Data is mostly tailored for small teams of professional transcribers, but also
individuals requiring transcriptions.

With it being a smaller company, Spoken Data was more responsive to making
changes and improvements. For example, a user needed to be able to delete a video
uploaded to their system through the API, (to avoid issues of duplicates in their
dashboard if the user uploads, deletes and uploads again the same video in an
application) and they were very quick at implementing that feature.

They also provided other functionalities such as a view to edit the transcription, that
allows users to edit recording subtitles through a tokenized access URL. That is
available through the API.

http://spokendata.com/transcription/846/e6881695913bb807b81cf87ce79f4bfd3c84d
0c4

(from Spoken Data demo account)

This could be useful to give the users of this project’s app a way to edit automated
transcriptions without having to implement it from scratch.

Hyper.Transcript(Converter(
Eventually Mark Boas (Mark Boas 2013b) automated the process of passing srt files
into a hyper-transcript with a hyper-transcript converter written in JavaScript. This
library was developed to support the hyperaudio pad project, (Mark Boas 2013a) but
it is all client side Javascript.

21

Hyper-audio converter - Mark Boas

From the line-accurate time code of the srt file it works out a word accurate hyper-
transcript, with each word in a span tag with a relative time attribute.

An analysis of this algorithm can be found in the appendix, as this was converted
from Javascript to Ruby to move this conversion logic in the backend of the
application.

Video(Grep(
Video grep (Sam Lavigne 2014b), as the name suggests, is a command-line-utility to
search the audio in a video file and return with cut segment as a new file.

Video Grep is a Python library for editing videos that provides the user with a search
tool to search and return all the clips of sentences where a specific word is
mentioned (Sam Lavigne 2014c). For an example, the developers used this same
tool to extract all the parts in a speech where the White House press secretary says
‘what I can tell’ (saaaam 2014).

This uses offline speech to text library pocket sphinx (The Sphinx group Carnegie
Mellon University 2015b), a C based lightweight version of the Java based CMU
sphinx library (The Sphinx group Carnegie Mellon University 2015a), to transcribe the
video and generate a subtitle file.

The subtitle file associated with the video is used as a starting point to find the words
and then cuts the corresponding video using the Python library moviepy (Zulko
2014), which is built on top of FFMPEG (FFmpeg team 2000).

A Mac app version (Sam Lavigne 2014b) (using electron (Kevin Sawicki 2015) of
Video Grep was recently being released providing a GUI to the command-line utility.

22

Video Grep - mac app using electron

No level of granularity control on selection, or hyper-transcript was used.

This project is reminiscent of Cassetteboy (cassetteboy 2006) - a well-known video
artist, who utilised video editing mash ups, generally of politician’s speeches for
parody.

However in this interview he mentions he uses a manual and time-consuming
workflow to search and identify the relevant video segments for his edit.

Making these videos takes a lot longer than many people might assume,
doesn’t it…

“It is a long time. The original Apprentice video, we were working on it on
and off for a couple of months. This new one we’ve done is well over a
month. If you think about just watching the material, say a boardroom scene
lasts half an hour, it will actually take an hour, an hour and half to get
through it the first time around. You just keep stopping it, taking samples of
bits that might be useful, filing them and then categorising them. So you can
only do a few episodes per day.”

“You also start to go a bit mad. It’s quite a strange way of working and
watching a show. You are listening, but you are listening to individual words
rather than sentences. You try to ignore as much as possible the actual
meaning and focus on what you twist it to. That takes quite a lot of
concentration and you couldn’t watch more than 6 or 7 episodes a day,
because you’d drive yourself absolutely crazy.” (Alex Fletcher 2014)

There is also an audio grep version (Sam Lavigne 2014a).

BBC(Snippets(
This application (BBC R&D 2011a) allows BBC employees to search for programs in
the BBC Archive (only within the last 5 years), searching across the text of the

23

subtitles. It uses a form of hyper-transcript to keep audio and video in sync, allowing
the user to cut video segments from past videos.

However the subtitles seem to be generated using OCR from onscreen subtitles
rather then using speech to text technology (BBC R&D 2011b) .

BBC Snipets

The hyper-transcript seems to be more sentence-accurate rather then word-accurate.

As far as I am aware there is no real system to deal with un-subtitled videos and
transcriptions generation is not in place.

No form of analysis on transcription, auto-tagging or summarisation was provided.

Most importantly, the cutting of the video segment is done at the level of the video
timeline and not of the text.

Moments(.(Prototype(
Moments is a web application proof of concept that allows a user to add an inline
drop-down video snippet to a text article. It uses a CMS for the journalist and has a
published view for the viewer. It does not use transcriptions.

From this project I initially got the idea for an inline text dropdown of a video element.

24

Moments

It was prototyped by the Times Digital Team and is the winner of the 2014 Editors
Lab at GENSummit2014. However as mentioned this is a proof of concept and not a
fully working application.

Hyper(Audio(Pad(
Hyper Audio Pad by Boas (Mark Boas 2011) allows the user to make remixes of
videos based on the text of their transcriptions/subtitles.

It uses Boas hyper-audio converter component (Mark Boas 2013b).

prEdit(
This is a similar solution to hyper-transcript but is desktop based and provides
integration with editing software. The interface is not very intuitive which limits user
interaction.

2.2.2. Related Work

With a background in documentary production, the author has a long standing
interest for working with transcriptions effectively, so here are some previous projects
that influenced the current one.

Examples of previous projects undertaken based around an interest in transcriptions
are listed below:

25

AutoEdit - for Entrepreneurship Module

autoEdit - ‘Digital paper editing’ (Passarelli Pietro 2015a) is an application that
enables the user to make a script from a selection of lines from the transcriptions of
interviews. The user can then export the file as an EDL. This can be opened with the
editing software of the user’s choice to reconnect the corresponding video into a
sequence, and finish working on the rough-cut assembly (Passarelli Pietro 2015c).

autoEdit had a component for parsing srt/sbv files. Initially, during the quickQuote
project, the idea of utilising a similar parsing component occurred. However, a line
accurate rather than a word accurate hyper-transcript would be more beneficial.

autoEdit

Additionally, autoEdit does not support uploading video and cutting video segment,
but instead uploads srt files then exports EDL file.

Build the News Proof of Concept

Interactive debate - Analysing speech in Video, is a system that generates a video
transcription, identifies the different speakers, provides a summary of the main topics
and keywords as well as the emotional charge of the speaker. Winner of the Times
‘Build The News Hackathon’ (Passarelli Pietro 2015d).

This is further discussed in the Investigation section.

Difference

Video quote extractor is different from previously mentioned projects in that it;

• leverages speech to text API to automate transcriptions
• has an easy-to-use interface to make selections of quotes, and cut the video

automatically
• provides embed code for embedding
• gives more control to the user in selecting a quote through text selection

26

• makes the most of HTML5 video tag using videojs and doesn’t need to use
popcorn Javascript, flash or JPlayer

• is an MVC web application with distinction between back end, and front end and
has the database to preserve state.

2.3. Research done

Research was also done on the following topics:

• Speech-to-text solutions
– YouTube captioning
– SpokenData API
– Dragon Naturally speaking
– CMU Sphinx (offline Speech To Text)

• Hyper-transcripts
– analyse algorithm of hyper-transcript converter and refactoring in Ruby, see

appendix
– video Javascript, clickable, searchable transcriptions components

• knowledge domain of the application.

2.4. Tools and Software selected for use in the project

2.4.1. Intro to software

An overview of Rails and a description of how Rails uses AJAX to handle client side
interactivity can be found in the appendix.

Ruby on Rails vs Laravel PHP

Both Ruby on Rails and Laravel PHP are well supported with Jet Brains IDE, which
was used in this project to increase productivity.

After an initial study of the Laravel PHP framework, to minimise the learning curve of
new language/framework for the server side back end and to concentrate on the
investigation and the implementation of the solution, it was decided to opt for Rails.
Because of previous experience in Rails, it was a good chance to consolidate a
number of components (including an sbv/srt parser) that could be modified from a
previous project, and other Ruby libraries such as a Timecode one (Julik Tarkhanov
2009).

Front End Client Side Interactivity

JQuery(vs(Angular(vs(React(

27

The framework Angular and React were studied, but the conclusion was that it was a
bit over-complex for this project as well as having too steep a learning curve. Instead,
a better option was to use JQuery, to ensure cross browser compatibility and to try
and keep code well organised within the Rails framework. First of all, Javascript had
to be learned, to better understand the workings of JQuery, especially for
manipulating elements on the DOM.

Mobile(First(Responsive(Bootstrap(
Despite there being no requirement of the use of an application that works on a
mobile or tablet, it was decided to keep the option open, using Bootstrap’s
responsive, mobile first framework (Twitter 2012) and to use Bootswatch (Thomas
Park 2014) for the theme. This makes it easy to change between Bootswatch themes
with minimal effort, but also if in the future there is the need to create a bespoke
theme, the Bootswatch classes and IDs provide an interface where it is easy to
modify the style.

Hyper.Transcript(.(Video(
The hyper audio converter (Mark Boas 2013b) and Boas Al Jazeera interactive
debate projects (Mark Boas 2012), discussed in the previous chapter, were studied
closely to understand the implementation of the hyper-transcript, especially looking at
the interactivity and the two way sync between text and video.

At the BBC Hackathon, discussed in the Investigation section, there was a chance to
prototype an alternative way to do hyper-transcripts using Video JS and JQuery
instead of popcorn JS and JPlayer used by Boas (Mark Boas 2013a).

Because of the nature of this project, it was decided that it was more logical to parse
the srt file in the back end, in the model class of the Rails MVC, which also would
make it easier to test it. This is also consistent with the MVC design pattern where
views are less code-heavy than models.

It was also decided to store the transcript in the database in a way that would make it
easier to retrieve as a hyper-transcript. This is discussed in later sections.

In the appendix, there is an analysis of the javascript hyper-audio converter by Boas
and this project’s re-factoring implementation in Ruby.

Using the hyper-audio converter JavaScript library/open source project (Mark Boas
2013b), it was decided to convert that into MVC Ruby language as a method in the
model to refactor it as a component and to more efficiently enable testing (as this
way could be refracted as a Ruby gem to be used in subsequent projects). This is
discussed in greater detail in following chapters.

Re-writing hyper audio converter from Javascript to Ruby meant that it could be
abstracted and packaged as a gem component to create hyper-transcripts from srt.

Video(JS(

28

Video JS allows us to make the most of the HTML5 video tag, instantiating it as a
Javascript object (Brightcove Inc 2010). In particular for this project it was useful to
be able to play, pause, retrieve and set current time. These functions were at the
core of the hyper-transcript interactivity, realised with JQuery. Each word was
encapsulated in the HTML element span tag with timecode attribute-associated in
seconds which made this possible.

APIs

Implementation(of(Ruby(SDK(for(Spoken(Data(
The choice of using spoken data rather then YouTube captioning API was discussed
in an earlier section. In order to facilitate a more modular component, a Ruby SDK
was made to create an interface for the text-to-speech API that would make it
possible to be able to change text to speech component, without undergoing major
refactoring of the rest of the application. See appendix for the code implementation.

Google(Authenticator(
Google Authenticator was used to handle user authentication and integrate with the
current system in place at the Times.

2.4.2. Deployment

The application was deployed on the Times Amazon Cluster using Deis. A Heroku-
style deployment was chosen amongst the options, for its widely-known convention,
for when the project will be open sourced. A bash script was written to automate the
deployment process.

2.5. Tools

Ruby Mine IDE, Git, and Github and deployment Heroku style were all used.
Balsamiq Mockup 3 was used for drawing and presenting proof of concept prototypes
to the users and stakeholders. The use of VM was considered an option, such as
Vagrant but to reduce the overhead of learning curves, the decision to not use it was
reached. Instead, it was opted to keep logs of how to setup various dependencies.

2.6. Summary

This chapter has provided context and background to the project, as well as explored
sources, similar solutions and introduced the software.

29

3. INVESTIGATION
The first step for creating a tool for journalists in the newsroom required gaining a
good understanding of the problem domain.

A problem domain is the context in which a particular problem exists. For
example, the problem domain in which a specific route plan exists is that of
maps, route planning, travelling and strategies for moving around. Critically,
the problem domain is relatively stable, changing only slowly, while specific
problems to be solved are transient and change regularly. (Winder et al.
2006, p354)

This chapter outlines the most significant part of the investigation into the problem
domain.

If you are able to capture the problem domain as the core of the design of
your program, then the program code is likely to be more stable, more
reusable and more easily adaptable to specific problems as they come and
go. If you only capture a specific problem as the core of your design then
your program code is only good for solving one problem and will, at best,
require significant modification to solve a different problem. (Winder et al.
2006, p354)

3.1. Background: The Times Build the News Hackathon

Prior to the quickQuote project, on 28th - 29th March 2015, there was the Times
Build the News Hackathon, of which the author of this dissertation took part and was
on the winning team. There, a demo proof of the author’s concept for the idea given
a video would provide an insight into its content was given, by generating
transcription, identifying key speakers, main topics, keywords and a summary.

30

Interactive Debate Prototype - Times Build The News Hackathon

An R&D Approach was used for the development of this application, testing
components in isolation and manually passing output between each to verify that
they would integrate and build a dummy-interactive demo to demonstrate proof of
concept (Madalina Ciobanu 2015).

Drawing form a number of open-source projects and components:

• Open-source project Interactive Aljazeera Obama-Romney debate,
mentioned in the previous section (Mark Boas 2012)

• Choosing a suitable case study, ie TV interview for elections.
• Identify components, and manually test in and out before implementing the

system. Making API calls and send results manually
• YouTube captioning - YouTube API v3 (Google YouTube 2015b)
• Speaker diarization (and cross referencing timecodes)
• Hyper-audio Convert open source project in JS(subsequently converted into

Ruby and moved in model of MVC rails) Boas (Mark Boas 2014) expressed a
preference for using HTML as a data-structure. Here, it was flagged that it did
not seem to be a sound soft engineering choice. JSON was suggested as an
interchange format to preserve the state of transcript.

This led to being taken on for an internship with the Times and Sunday Times digital
team and this is where the quickQuote project began.

3.2. Research of the Technology Stack

The internship was to start in July and last until mid-August.

The month of June was spent researching the technology stack and possibilities for
the implementation of such systems.

Laravel PHP was initially considered as MVC framework, as it is the one used by the
Times. However after careful consideration, Ruby on Rails was considered the best
choice, as the author’s previous experience with it would make the prototyping a lot
faster.

For front end, AngularJS was considered for the same reason, but considering the
steep learning curve, JQuery was used instead.

3.3. BBC Hackathon NewsHack

On June 3rd and 4th, the author took part in the BBC NewsHack Hackathon as
developer in a team with a journalist and designer. This was won with one of the
author’s ideas.

31

This was a good chance to test an idea for a possible summer project. The system
would be creating a story editor CMS that would allow journalists to create a
multimedia story once (with audio, video, stills and text) and produce 3 distinct
outputs: a news article, a podcast, and a video. The viewer could then switch
between these three outputs seamlessly.

Because of time constraints and to narrow down the scope of the project, it was
decided to focus on building a proof of concept demo that would allow switching
between the article and podcast.

BBC News Hack - Proof of concept Demo

The system also allowed the user to click onto a quote and hear an associated sound
byte.

BBC News Hack - Proof of concept Demo - Audio Quote

32

Despite the success of the project, it was decided that for the summer project it was
more useful for the Times to build a tool that would integrate with their existing CMS
tool and would have a higher use rate, as these type of multimedia productions are
quite labour-intensive at present as well as infrequent.

As a result of the proof of concept, one of the developers at the Times developed a
“card component” to embed “audio quotes” in their existing CMS, for a long form
article about the 7/7 bombings.

Times Audio Quote Component

However this audio quote component takes the input of the text of the quote and the
corresponding video file. It does not help with finding the quote and trimming the file.

3.4. Video Analyser Prototype

To investigate the use for a system that would provide some sort of insight into
videos, I started researching and prototyping a “video analyser” web application.

3.4.1. Baseline Project

The baseline for this project was a web application where, given a video by the user
and a subtitle file transcription of that video, would display the video with a clickable,
searchable version of the transcriptions, and some insight into the video, such as the
most used keywords and their significance.

YouTube captioning was used to generate an srt subtitle file of the transcription.

33

/

Baseline project

The application is composed of an upload, a dashboard and a published view.

The dashboard is where the user can search and interact with the transcriptions
through a hyper-transcript synced with the video. From the dashboard the user can
then publish.

At this stage the published view consists of a link that displays the video and the
hyper-transcript.

3.4.2. NLP Analyses

Because the nature of the R&D investigation was to explore what was feasible, and
whether there was any real use for using NLP to gain an insight into the video, this
phase was prioritised over the API to automatically generate transcriptions. The
method of sampling out what was “manually generated” from the speech to text API
was used as the starting point of this NLP analyses component (AlchemyAPI Inc
2015b).

As this involved researching NLP API solutions, the choice narrowed down to
Alchemy API for identifying keywords, key concept, entities and sentiment analyses
and “smmry” for summarization (Elmaani LLC 2009).

34

Video Analyser - NLP - Dashboard

3.4.3. NLP Analyses Use Case

To try to narrow down what could be useful information and/or interpolation that could
be done with the data returned by the NLP API calls, it was decided to try to apply a
use case.

The George Osborne 2015 parliamentary Budget speech (HM Treasury and The Rt
Hon George Osborne MP 2015).

Video Analyser - NLP - Use Case

This was done working with the Data Team at the Times. The system identified
keywords, concepts, Entities, provided sentiment analyses, and with summary API
provided suggestions on most significant quotes from the speech.

However the specific use case demonstrates that without further interpolation and
analyses of the NLP results, the insight provided by the system was not particularly
useful to the journalists, and the user’s feedback did not provide any clues on how
that could be improved.

This is also when it became apparent that summarisation API algorithms need
transcription to work. In the case study of the George Osborne budget speech, the

35

transcription had punctuation, because it was a written speech and the original could
be found on the .gov website (HM Treasury and The Rt Hon George Osborne MP
2015). This was then added to YouTube captioning, that lined it up with the video.
However the issue with this was that anything said by the speaker outside of what
was written for the speech was not included in the transcription, and unscripted
remarks were left out.

The modeling of the transcription in the database to circumvent this issue is
discussed in the Requirements Chapter.

3.5. quickQuote - A Video Quote Extractor

Having explored the NLP analyses option, a revisit to the results of the Hackathon
was useful. Here, the implementation of the audio quote component for the Times
CMS was considered, looking into carrying out something equivalent for video. The
audio component assumes that the user already has a trimmed audio clip and text
quote. Whilst the video quote improvement (aside from supporting video) would also
have been helpful in identifying the quote.

3.5.1. The Hypothesis

After discussions with the journalist who wrote the article that incorporated the audio
quote component, the hypothesis was that a system to extract video quotes would
have saved him a considerable amount of time (estimated to be more then five
hours) when selecting a video clip for that article.

3.5.2. The Proof of Concept Prototype

Components from previous project such as the baseline project with hyper-transcript
were used.

Using the hyper-transcript from the previous video analyser system NLP Analyses
Use Case I added the feature to demonstrate the functionality.

The user selects text and a link is then generated and added to the page. When
clicked, it takes the user to a new page with the quote and a drop-down of the video.

36

proof of concept quote

proof of concept dropdown

3.5.3. User Stake Holder Feedback

This was presented and a discussion to agree on a minimum set of requirements for
the project arose.

Presenting a proof of concept where, when the user selects a quote, it populates a
text area of where the selection can be edited.

37

Select a quote

The quote can also be previewed.

38

Preview a quote

When clicking on the quote, the video drops down.

Preview a quote

3.5.4. Refactoring and Implementation

This was followed by refactoring, implementation and deployment, which is
discussed in more detail in the following chapters.

Home Page

39

3.6. Summary

This chapter has given an overview of the iterative nature of the investigation that
was carried out to better understand the problem domain, frame hypothesis and build
prototypes.

40

4. REQUIREMENTS AND ANALYSIS
The initial focus of the investigation was on capturing the problem domain of working
with video and transcription in the newsroom to give a way into adding more
multimedia elements to news articles, aiming to reduce the cost traditionally
associated with working on multimedia.

Object-oriented analysis and design is based on a process of first identifying
the abstractions needed by a program and modelling them as classes.
(Winder et al. 2006)

This was the approach taken during the investigation to identify a comprehensive
solution. In this section an overview will be given of the requirements gathered in the
last stage when the final solution was identified, and what the program is expected to
achieve will be considered.

4.1. Problem Statement

The problem statement was introduced at the beginning of the introduction, following
the investigation section. What follows revisits of the problem statement.

The aim is to develop a web application that allows the user to upload a video, select
a quote (from an automatic generated transcription of the video) and obtain a HTML
code to embed a video quote into a news article. This should have an intuitive user
interface.

4.2. List of requirements

The first goal of requirement gathering is to generate a list of what the
program is expected to do. Following an agile approach, each requirement
is called a ‘story’, therefore, the requirements are a collection of stories
(Winder et al. 2006, p359).

Each story is a short written description of some aspect or behaviour the
program should have. (Winder et al. 2006, p359)

Because of the iterative nature of the investigation, by the time the requirements of
the final solution were identified, the user stories were already elaborated into
scenarios and geared towards use cases.

The user requirements will now be considered. The user should be able to:

• Authenticate into the application, using their Google login
• Upload a video
• Automatically generate a transcription of the uploaded video
• Search the transcriptions for occurrences of specific words

41

• Click on the transcription and have the play of the video move to the
corresponding point in the video

• When playing the video, easily identify the corresponding text in the
transcription

• Select text from the transcription to identify a segment of video quote to export
• Preview their selection
• Cut the selected video segment, by exporting the quote
• Export a video quote, as a HTML embed code.

4.3. User Journeys

Use case 1, Signing Up: The user registers and signs into the application through
their Google account.

Use case 2, Uploading a Video

Pre condition: the user has logged in. The user navigates to the upload page, and
uploads a video into the application.

Use case 3, Analysing a Transcription

Pre condition: the user has logged in to the application. The user navigates to the list
of videos, clicks on one, searches the transcription, clicks on hyper-transcript, plays
and pauses the video.

Use Case 4, Selecting and Previewing a Quote Selection

Pre condition: the user has logged into the application, the user has navigated to a
specific video.

The user selects the text of the hyper-transcript, it is then given a preview of the text
selected and the timecode in, out and the duration.

Clicking on preview selection takes the user to a preview modal, where the text of the
quote appears styled as a blockquote tag element and when clicking on it, the video
drops down, previewing what it would look like when exported.

The user can then play the video, and only the video corresponding to the text
selection will play.

Use Case 5, Exporting a Video Quote Selection

Pre condition: the user has logged in to the application, the user has navigated to a
specific, video the user has selected a quote.

The user clicks on the export button, and receives feedback that the application is
processing the request.

42

When the processing is complete, a modal returns the HTML code with the code to
embed the video quote in a news article, which can then be copied and pasted
elsewhere.

The video tag in the HTML code contains a trimmed version of the video that
matches the selection of the text.

4.4. Result of Requirements Analyses

To build a model of the program, Brain-storming and common sense was used,
combined with identifying the requirements and use cases (Winder et al. 2006).

The overall modeling of the application was fairly straightforward given the gathering
of the requirements. If a user has several videos, those videos are going to have
transcriptions and each video will have several quotes.

However it was through the iterations of the investigation that shortcomings of the
initial modeling of the program emerged. The biggest issue was around modeling the
transcriptions which will be considered in more detail in the next section.

4.4.1. Modeling Transcriptions

One of the most challenging parts was deciding how to model the transcriptions in
the database, as getting this right would save a considerable amount of refactoring,
should the application change in the future.

There were two major areas to decide upon, one was whether to make the
transcription word or line accurate and the other was around the lack of punctuation
associated with the transcriptions, which would have implications when manipulating
elements in the DOM.

For instance when implementing search of hyper-transcript in JQuery, if the user
wishes to highlight and match words in the transcript, it poses no issues but if the
user wishes to narrow down results and show only sentences that have the specific
word being searched for, the user would need to calculate the boundaries of each
sentence, requiring extra parsing on the client side.

Raising the question of how the user can identify sentences: neither option has a
representation of sentences, as YouTube generated lines from the subtitles tend to
be arbitrary separations of the text. At the moment adding </p> when a word or line
has a full stop in it, could work, but automatic generated transcriptions do not have
punctuation.

Option One - Model subtitle file

The first option considered was to model over the subtitle file srt file.

43

This is a sample srt file:

1
00:00:10,120 --> 00:00:11,070
Hello world
test

2
00:00:12,020 --> 00:00:12,220
Another sentence
...

and this would be the corresponding Lines table

id tc_in tc_out text transcript_id

1 “00:00:10,120” “00:00:11,070” Hello world test 2

2 “00:00:12,020” “00:00:12,220” Another sentence 2

… … … … …

Where ID is not the line number of the ‘srt’ file, but rather a unique identifier for the
line, consistent with the Rails convention.

while tc_in and tc_out are timecodes from the .srt file.

Here, storing the timecode as a string, is the method used, utilising the ruby timecode
gem to parse the timecode, or do timecode operations if needed.

Alternatively the Timecode gem could be set as a custom type in the Rails active
record ORM.

The text is self explanatory, although it is worth noting that in the srt and sbv at times
the text can be split across two lines.

The transcript_id is the foreign of the transcript the lines belong to.

The issue with the line accurate option is that, if made with Youtube, the lines are
arbitrarily defined by Youtube captioning, and do not necessarily correspond to
sentence breaks.

Option 2 - Hyper-transcript

The second option was to model the transcription over the hyper-transcript that will
be used to represent it in the view.

44

Using the open-source hyper audio converter from github (Mark Boas 2013b), this
converts the srt file from line accurate transcriptions to word accurate ones. Re-
factoring this code that parses an srt file into a hyper-transcript in Ruby, enables the
parsing in the model and makes it easier to test, rather than doing the parsing in the
front end.

The result would be that the “hyper-transcript” would appear like this:

Hello world <a m="1079
9">test Another sentence

Where m="10120" is the corresponding time for that word in the video in seconds.

The corresponding representation in the database would be:

id tc Word transcript_id

1 10.48 Hello 2

2 11.38 world 2

3 12.08 test 2

4 13.08 Another 2

5 12.28 sentence 2

… … … …

The main difference is that this time it is word accurate and we do not have a tc_out
but instead just a timecode in as tc.

Aside from these details, the main issue to resolve was whether to model the
transcript as word accurate or line accurate.

Lack of Punctuation in Transcription

One of the issues around transcriptions that were affecting the modeling included the
fact that the automatically generated transcriptions do not have punctuation but could
have punctuation if the user were to manually edit them, for instance through the
spoken data transcript editor interface.

The lack of transcriptions punctuation is an issue for two reasons. On one hand
without punctuation, the hyper-transcript would be displayed as one continuos block
of text without paragraph breaks as any break point (or opening and closing of a P-
tag) would be fairly arbitrary at that point. The other issue would be to create a

45

summarisation feature at some point in the future, which would enable automatically
suggested quotes, which is something that was tested during the investigation.

Final Modeling of the Transcriptions and Database

For the final modeling of the transcriptions it was decided to store the lines
information of the srt file automatically generated by the speech to text APIs but use
the words as the atomic element of the transcription.

If the user were to edit and add punctuation to the transcription at a later stage, it
would be easy to write a method to update the lines table.

As mentioned, Rails uses active record ORM to map the tables of the database, to
the classes of the model of the MVC. This is discussed in further detail in next
chapter.

4.5. Summary

This chapter gave an overview of the project requirements, and discussed the most
interesting problems in this area.

46

5. DESIGN AND IMPLEMENTATION

5.1. Rails Model Classes

As mentioned in the previous chapter, Rails uses ORM Active Record, to map the
model classes to a database table. Therefore the data modeling corresponds to the
class modeling, in an object oriented fashion.

The relationship between classes will now be considered in greater detail, also
exploring the attributes of each.

A user has many videos.

A video belongs to a user, and has many transcriptions.

A transcription belongs to a video, has many lines, and has many words through
lines.

A line belongs to a transcription and has many words

A word belongs to a line and has one transcription through a line.

This diagram gives an overview of the classes in the application and their attributes.

Implementaiton diagram

5.1.1. User Class

Google Authentication was used to handle authentication, the sole purpose of the
user class is to keep track of a session while the user is logged in.

47

5.1.2. Video Class

Video File

The paperclip gem (thoughtbot 2008) was used to handle video file assets. This is
very convenient, as it simplifies operations such as adding or deleting a file
associated with a video instance. For example you can delete the video file
associated with the video instance as follows:

@video.media = nil

As used in the video controller under the destroy method, so that when the user
deletes a video object, it deletes the associated file as well.

Paperclip automatically handles other attributes associated with the file, such as
content type, file name, file size and the date of upload.

is_processed

The Boolean attribute is_processed was used to handle the speech to text API
(spoken data) delay in processing transcription.

In the database this is set as false, represented as zero, when the user first uploads
it. The video is then sent to SpokenData. Then when the user views the index videos
page/show page, the controller (when serving the page) checks the is_processed to
evaluate if it is necessary to make the API call.

UID

The UID attribute is produced by SpokenData to retrieve transcriptions in subsequent
API calls.

Link

The link attribute stores a link to the url of the amazon s3 bucket where the video files
are stored.

5.1.3. Transcription Class

This only has description and name, because the main function is to group the lines.

5.1.4. Line Class

Lines have no attributes, but only a transcription ID foreign key, as their sole purpose
is to group words, which is a solution to the lack of punctuation as discussed in
previous chapters.

48

5.1.5. Word Class

 Line_ID

Words have a line foreign key line_id to group them into lines as previously
discussed.

TC_IN and TC_OUT

The timecode attributes TC_IN and TC_OUT are stored as float and they represent
seconds.

These are generated using an algorithm to make a word accurate hyper-transcript
data structure, discussed in the following sections.

When parsing the srt file the time is converted from this format hh:mm:ss,ms (ie
"00:00:10,120") to seconds using the Timecode gem (Julik Tarkhanov 2009) before
saving.

Initially, the method of storing as string in the notation used by the srt file was thought
of, followed by a choice of seconds because both FFMPEG and Videojs work in
seconds, and could use Timecode Gem to convert to other timecode formats should
a need for it arise.

Word

The word attribute itself stored as a string.

5.1.6. Quote Class

 Video File

Similarly to the video class, the quote class uses the paperclip gem to handle the
video file. The attribute for the video file is called snippet.

During the project, a snippet of a quote was defined has a video segment being cut
from a video using FFMPEG.

 Link

Similarly to the video table, link also stores a link to Amazon S3 URL for the trimmed
video segment.

49

TC_In and TC_Out

Timecode in and timecode out and the duration stored as floats, represent seconds
for the video segment of the quote and are relative to the parent video.

These are computed in the front end using JQuery initially when then selection is
made, and then sent through to be saved in the database when the selection is
exported using AJAX. This is discussed further in later sections.

Author, and Text

Last but not least there are attributes to string and text attributes to save the details
of the quote such as author and text.

5.2. Database

As mentioned, Rails uses ORM, object relational manager, so the model classes
discussed above are automatically mapped to a database table through migrations.

Implementation diagram

5.3. Components

The following text will now consider the implementation of some of the most relevant
and interesting components.

5.3.1. Third Party Components

Firstly, the third party components used should be considered. The main ones were
Video JS, Bootstrap and Bootswatch.

50

Bootstrap

Bootstrap was mostly used to handle responsiveness of the website, but also from
the bootstrap library, the modal and drop down JS components were used, for
preview and export of video quote, and video quote drop down.

Bootswatch

Bootswatch was used for theme, both to provide a quick intuitive design to the front
end but also to provide a set of interface CSS classes and IDs if in the future
bespoke theme would need to be made, to make it easier to swap and plug.

VideoJS

VideoJS was used to make the most of HTML 5 video tag and treat video as a JS
object. Combined with the functionality of the HTML5 video tag was possible to use
methods such as GetCurrent time and SetCurrent time that were crucial not only to
make the hyper-transcript work effectively but also to make it possible, combined with
JQuery, to select, preview and export a video quote.

5.3.2. SpokenData API SDK

The SpokenData API provides a set of RESTful URLs as an interface to access their
service. This was abstracted as an SDK component and an interface was written that
could allow for the future swapping out of YouTube captioning API, other third party
API, pr using CMUSphinx for offline speech to text, provided that the appropriate
interface is implemented.

The SDK interface was inspired by Alchemy API Ruby SDK (AlchemyAPI Inc 2015a)
and where an “API class” contains methods encapsulating Restful API calls, as well
as aiding the API Key authentication.

See the appendix to view the code.

Additionally, SpokenData supports sending a video through a post request specifying
the URL of the video, which makes it easier to send a video that might be stored on
an Amazon S3 Bucket.

5.3.3. Hyper-transcript

To make a Hyper-transcript after considering various implementations mentioned in
the context chapter, in the context of the Times Build the News Hackathon the Mark
Boas implementation of Hyper-transcript was used in the Obama Romney Al Jazeera
debate (Mark Boas 2012) which used popcorn JS and WJPlayer.

51

It was during the BBC NewsHack Hackathon that the decision to attempt to make a
simplified hyper-transcript using video JS and JQuery was made.

This proved to be a simple solution with more straightforward code.

So what is a Hyper-transcript?

First and foremost it could be argued that it is easier to think of it as a data structure.
It should be a data structure that stores the text transcription of a video and has
timecode information to map the text to the corresponding point in the video. The
granularity of this text-video correspondence should be word accurate.

On the front end it should provide functionality such as searching for specific words,
live colour highlight to keep correspondence between text and video, and scroll sync
with the video.

Choosing an Appropriate Data Structure

Boas (Mark Boas 2014) argues for the choice of using HTML as a data structure to
preserve the state of the transcription.

However with the increasingly flexible use of JSON as a data structure and
frameworks such as Angular and React, it could be argued that if the hyper-transcript
component used JSON representation for the data structure and had a method to
parse srt files and a method to render it as HTML, that would be a far better and
more future-proof implementation on the server side, which would also make it easier
to do things such as saving it onto a relational database and integrate with front end
frameworks such as Angular or React, should there be a need for it.

Then on the front end client side it would be represented as HTML, using JS (or
some other JS-based library or framework) for client side interactivity.

Parsing Srt File

To create a hyper-transcript from srt file input, retrieved from speech to text API. It
was then decided to refactor the Boas hyper-audio converter JS opensource project
(Mark Boas 2013a), as mentioned in the context chapter.

One reason for refactoring was that this could be extrapolated as a standalone
component - Ruby Gem. The other was that to be consistent with the Ruby on Rails
convention over configuration idea, it was best to move this business logic into the
model, rather than having this processing done with client side JS.

Another reason was that this way, the method could take into account the content of
an srt file as a string and return a hyper-transcript data structure making it more of a
self sufficient component.

52

A full breakdown of the analysis of the hyper-audio converter by Boas can be found
in the appendix.

Saving the Hyper-Transcript Data Structure Into DB

As mentioned in the previous section, the method called
convert_srt_to_word_accurate_hypertranscript which is in the video model, takes a
srt file as a string and outputs hyper-transcript hash data structure (which is
equivalent to a JSON)

Once the srt had been turned into a hyper-transcript data structure, then the result
was saved into the database using Rails Active Record ORM that, as discussed in
previous sections, was modeled around the structure of the hyper-transcript.

The parse_srt_and_save_into_db method takes in the video UID which is stored in
the database and is originally returned by SpokenData on successful submission of a
video.

It then initialises a SpokenData API object and uses the retrieve_subtitles_srt
implemented in the Ruby SpokenData SDK to check if a srt transcription is available
for the SpokenData API. If it is, it is then converted from a string containing the
content of the srt file to a hyper-transcript Ruby hash/JSON data structure using the
convert_srt_to_word_accurate_hypertranscript.

This hyper-transcript data structure is then saved into the database using the
save_to_db method, which will now be considered in further detail.

It creates a new transcription instance, iterated over the lines in the hyper-transcript
data structure and creates words associated with lines using Rails ORM syntax
@line.words.create.

Serving Hyper-Transcript Data Structure to Views

To render the hyper-transcript to the views in Rails, it was decided to follow the Boas
(Mark Boas 2013b) way of surrounding the text of each word into a span tag and to
add other information as attributes.

By rendering HTML using Ruby ERB templating language in the Rails view,
app/views/videos/show.erb.html

 <% @video.transcriptions.last.lines.each do |line| %>
 <p class="line">
 <% line.words.each do |word| %>
 <span class="word not-read" tcIn="<%= word.tc_in %>" tcOut="<%= word.t
c_out %>" line="<%= word.line.id %>" transcription="<%= word.transcription.id %>">
<%= word.word %>
 <% end %>

53

 </p>
 <% end %>

This way each line is inside a paragraph tag and for each line all the words are
enclosed into a span tag with the corresponding attributes.

@video.transcriptions.last.lines Rails ORM syntax was used, to retrieve the lines
from the last transcription of the current video.

This is because a video is allowed to have multiple transcriptions. In the current
implementation it is only going to have one, but just in case this changes and the
transcription is updated, the option of retrieving the latest version is always wanted,
as it will be the most up-to-date.

This could also allow a swap out of transcription to show something such as a
translation in a different language.

Ruby ERB renders as HTML span tag on the client side.

<span class="word not-read" tcin="482.708" tcout="483.749" line="237" transcription
="6">web
<span class="word not-read" tcin="483.055" tcout="484.443" line="237" transcription
="6">site

The interactivity to make the span tag clickable is then added using JQuery.

A more step by step explanation of the code can be found in the in line commenting
below.

//make text spans clickable
 clickableSpans();

//Function to make the span tags clickable, the user clicks the text and is then taken t
o the corresponding part in the video.

 function clickableSpans() {
 //grabs the video element with `video_player` as id. and does play pause on it to
get current time to zero.
 videojs('video_player').play();
 videojs('video_player').pause();
 $("span").click(function(){
 //get the `tcin` attribute of clicked span tag, which is the corresponding time for
that word in seconds
 var time = $(this).attr('tcin');
 //sets current time of player
 videojs('video_player').currentTime(time);
 //sets play to current player
 videojs('video_player').play();

54

 }); //end span JQuery $("span").click
 }// end of clickable Spans function.

Colour(Highlight(
To make the correspondence between the video and text of the hyper-transript clear,
it was useful for the text to change colour while the video was playing and show the
current word.

This was done by iterating through all of the words, and comparing the current time
of the video player with the timecode in time attribute of each word. If the words ‘time
attribute’ is less than the currentTimeInSeconds the CSS Class is changed from not-
read to read, otherwise the opposite, which respectively changes the colour of the
text from grey to black.

Scroll(Sync(
It was also useful to make the correspondence between the video and text of the
hyper-transcript clear, to have auto scroll sync of the hyper-transcript to the current
part of the text while the video was playing.

The player on time update function was considered by noting that the implementation
of colour highlight is triggered constantly while the video is playing. Within that scope
the scrollText function was also called.

This works by finding the span tag of the current word by comparing the current time
against the time attribute of the word.

For accuracy and to generate a better match, decimal places have been removed.

The function .position() is used to to obtain the position attribute, while .scrollTop()
can take argument of where to scroll it to, while ‘without argument’ returns the user to
the current position.

Once there is a match, we are using position().top and adding that as an off-set to
the current position of the transcription using .scrollTop(). This moves the hyper-
transcript while the video is playing.

Word(Search(
JQuery was used to be able to search for a specific word, highlighting whole lines in
yellow, and making the word within it bold.

Keypress is used to detect when the user types into the input field for the search.

Keyup is used to reset the search as the user deletes characters to enter another
search.

Val is used to obtain the character values in the search-criteria input box.

55

var txt = $('#search-criteria').val();

and contains is used to identify a match, both at line and word level.

.line:contains("'+txt+'")

In the identified matches, CSS properties are changed to a yellow background for the
lines and to bold font weight for the words to highlight a match.

5.3.4. Selectable Quotes

Before considering how JQuery has been used to select quotes, the HTML elements
used to preview the selection should be considered.

There is a text area for the text of the quote and four form input fields, respectively for
the author of the quote, the time code in, the time code out and the duration of the
selection.

Let us now consider how JQuery method works to get a mouse selection. It goes and
uses window selection method with different options for cross browser compatibility
and creates a range.

First part of the code, uses mouse up to detect when a selection is made.

Then an if else is used to create a range in different ways that takes account of
browser differences.

The code below adds the selected text to the text area for the user to be able to edit
it.

quote = selection.toString();
$("#textQuote").val(quote);

A Focus node and an Anchor node are used to obtain the extremity of the selection.
They are respectively the first and last element of the selection.

A range object is then created, and a number of base cases are being considered,
such as whether the selection starts from a paragraph tag for a line or a span tag for
a word. The closest word element is grabbed and associated with the selection_out
and selection_in var.

The two values are compared, because if the selection is done from bottom to top,
then timecode in and time code out would be inverted resulting in a negative duration
and causing error in the subsequent exporting of the video segment.

The input fields for timecode are then populated.

56

5.3.5. Preview Selection

To preview the selection of a quote, the Bootstrap model was used to preview
selection, grab text from text area, create a video instance with Video JS, and set
play and stop using TC in, TC out and the current time method.

5.3.6. Export Selection

This component is composed of another component to cut video and another to
generate the HTML code. These could be examined individually but because of the
flow of the data it was more logical to consider it as a whole, discussing it
sequentially.

The first part using AJAX, when clicking on an export button, grabs from HTML
elements that hold text of the quote selected in the text area and other details in
various form input fields such as and timecode in and out, duration and the author’s
name.

This is then string interpolated into a JSON and sent to the routes at the url path
save_quote as a post request with JSON data associated to it.

$("#export").click(function(){
// read select quote input fields of form, and makes ajax request to save quotes
// ajax to save quotes
 var $btn = $(this).button('loading');

 $TCIN = $("#input").val();
 $TCOUT= $("#output").val();;
 $duration =$("#duration").val() ;
 $author = $("#author").val();
 $textQuote =$("#textQuote").val();
 $dataToSend = {video_id: <%= @video.id %> , tc_in: $TCIN , tc_out: $TCOUT, du
ration: $duration, text: $textQuote, author: $author} ;

 var currentUrl = window.location.origin;

 $.ajax({
 type: 'POST',
 url: currentUrl +'/save_quote/',
 data: { "quoteDetails" : JSON.stringify($dataToSend)},
 dataType: 'json',
 async: true
 }).done(function(data){
 ...

in rails routes config/routes.rb, the http post request for save_quote is forwarded to
the controller quotes and the method save_quote_with_video_snippet invoked.

57

post 'save_quote' =>'quotes#save_quote_with_video_snippet'

Where the details of the quote are saved. See appendix for a breakdown of the
save_quote_with_video_snippet controller method.

FFMPEG(Trimming(Video(
Within that method, while processing, a system call request is made using backtick `.
A system call is equivalent to having the possibility of running a terminal command
line command within the Ruby language. In this case we are making a call to
FFMPEG, which is a library written in C and installed on the deployment server
through a build pack, to trim the video.

String interpolation to cut video with FFMPEG providing a url of the original video on
Amazon S3 is used. In FFMPEG -i stands for input, -ss specifies the trimming and
takes the start time, timeocde in, -t specifies the duration for the cut and -vcodec
libx264 is used to specify the H264 MP4 HTML5 compliant video codec. Some more
codecs and preferences are also used and finally the path of where to save the file
to.

`ffmpeg -i 'http://#{ENV['AMAZON_S3_BUCKET']}.s3.amazonaws.com/videos/media/
#{@video.id}/#{@video.media_file_name}' -ss #{@quote.tc_in} -t #{@quote.duration}
 -vcodec libx264 -acodec aac -async 1 -strict -2 #{@path_to_file}`

The video is then saved into the public folder, to save the video onto Amazon S3,
using the paper clip gem needed to open the video as a file, loop through it and
assign it to the @quote.snippet as would be the case with a temporary file being
uploaded.

File.open(@path_to_file, "r") do |f|
 @quote.snippet = f
end #
@quote.save

The Amazon Bucket URL is then saved in the database for convenience of retrieval,
using string interpolation and the snippet is removed from the root of the application,
since it has been moved to the Amazon Bucket.

@quote.link = "http://#{ENV['AMAZON_S3_BUCKET']}.s3.amazonaws.com/videos/q
uotes/#{@quote.id}/#{@snippet_file_name}"

@quote.save

`rm -rf #{@path_to_file}`

There may be a way to cut the video directly onto the bucket but this was the most
straightforward option for now. Another option could be to look into third party API for
server side video trimming, however this was not considered at this time as it could
incur higher costs.

58

Generating(HTML(Export(Code(
When AJAX receives data from the call back from controller a text area is used to
provide the HTML top part of the code. It contains CSS style, JS script to enable a
drop down of the video, without using the Bootstrap drop down component to ensure
wider compatibility when clicking on the quote.

The top part of the HTML code is generated using the code in the invisible text area
textAreaExport. This was done for simplicity and because it makes it easier in a more
human friendly format to change and customise the export code as opposed to if it
was one long string. It also contains the CSS to style the quote.

<!--Place holder textarea for styling of block quote on export, not visible on the page--
>
<textarea name="hide" id="topExport" style="display:none;">
 <style>
 /*styling of the video quote*/
 </style>
 <script>
 /*script for dropdown on video*/
 </script>
<div class='video-quote' id='videoQuoteText-id-n'>

 <small>► Watch Video </small>
</textarea>
<!--end -->

The callback receives the url of the recently cut snippet, which we need to include in
the HTML of the export.

In the second part of the AJAX request when the callback is received the rest of
HTML code is constructed using string concatenation and string interpolation.

The export text area in the export HTML modal is populated using string
interpolation.

5.4. Server Side Deployment

Since the project is going to be open-sourced, it was decided to use Heroku style
deployment as this is the most popular. This works with the Times infrastructure as
they use Deis on top of their Amazon cloud services.

This uses a build-pack to add Ruby to the server, as well as a multipack setup to
install FFMPEG onto the server.

See appendix for further details.

59

5.5. Summary

This chapter considered the design and implementation choices, concentrating on
the most interesting solutions.

60

6. TESTING
The application was extensively tested to ensure that it fully worked, and the tests
proved successful.

The testing strategy consisted in identifying the most important components and use
a mixture of manual and automated testing to ensure they were working correctly.
Given more time, more automated testing would have been put in place. Edge cases
and data validation was also addressed.

External libraries and APIs were not tested as deemed outside of the scope of a
good testing strategy, however SDK component for spoken data API developed by
the author, and srt to hyper-transcript parser were identified as key component of the
system and tested extensively.

Before considering the various type of tests, the structure of the application was
revisited to identify the most important components that were deemed necessary
testing.

6.1. Identifying Most Important Components

6.1.1. Overview of System

Here, an overview of the system following the flow of data will be considered.

A user signs up and authenticates using Google authentication.

Initially a video is uploaded into the application, by an authenticated user.

The video and its attachment is saved and sent to the speech-to-text API for
processing. When the video is ready, a transcription of the video can be requested by
the application. Once the application receives the transcription it parses it and saves
it onto the database.

The transcription is displayed in the view as a hyper-transcript with the corresponding
video. The hyper-transcript and the video have a certain degree of client side
interactivity, to allow the user to select, preview and export a quote.

When exporting a quote, the video is trimmed and a HTML embed code is generated
allowing the video quote to be embedded elsewhere.

6.1.2. Identifying the Most Important Components

From this analysis, it emerged that the most important aspect to test was the
integration testing. The user journeys presented in the requirements chapter, can be

61

seen as a sequence of requests, that correspond to the minimum level of integration
testing, that would guarantee a working application.

However because of the delay in processing and returning transcription by the text-
to-speech API, not all user journeys could be tested within a given timeframe, without
having to wait for the API response. The API response when processing a video file
can take anything from fifteen minutes to a couple of hours depending on a number
of factors.

Therefore Unit testing the Video model, for parsing and saving of the transcription
was also deemed to be an important part.

Testing the Spoken Data API SDK implemented by the author was also considered
to be an important part, as well as testing the method to parse the srt file into a
hyper-transcript data structure.

The video model was also tested for validating the input of the video upload form.

How the various parts were tested during the overall testing strategy will now be
considered in more detail.

6.2. Testing User Journeys

Integration testing in terms of user journeys, as a sequence of requests, was tested
both manually and automatically.

6.2.1. Automatic Testing - Selenium

Automated testing using the application Selenium covered use case one and two,
from the requirements chapter, i.e, a user signing up and uploading a video.

Selenium works by initialising a web driver that opens an instance of the Firefox web
browser. The driver can then be set to navigate to a defined url.

For this, a test Gmail account (without step 2 factor authentication that is enabled by
default for The Times & Sunday Times staff) was used to speed up the process.
Corresponding environment variables were added to the project and used in the
script to make it easier for other developers to use once the project is open-sourced.

Below are two extracts demonstrating how login and video upload were scripted,
while an overview of how Selenium works with the code of the test can be found in
the appendix.

Testing the Login - Selenium

Here is an example with inline comments of how the login functionality was tested.

62

In Selenium the find_element method is used to grab HTML elements on the page,
by class or ID. The send_keys element is used to fill in the text of an input field and
the click method does what the name suggests. A combination of find element, send
keys and click can be used to navigate between pages.

getting email input field element
email = driver.find_element(:id => 'Email')
adding text, email address, to the input field
email.send_keys ENV['TEST_EMAIL']
getting submit/next form button
next_btn = driver.find_element(:id => 'next')
clicking on button to submit form
next_btn.click

Testing Video Upload - Selenium

It was also possible to test the upload of a video file, by passing the file path using
send_keys, after which when the user clicks on the button, this uploads the video.

video_media_file =driver.find_element(:id => "video_media")
video_media_file.send_keys Rails.root.join('test', 'selenium', 'test_video.mp4').to_s
saving
save_btn = driver.find_element(:id => "saveBtn")
save_btn.click

Once the Selenium script was written this proved to be a quick and easy way to test
whether the sign in and video upload worked as expected.

6.2.2. Manual Testing

The remainder of the journey that had not been tested with Selenium was tested
manually. This involved testing components richer in client side interactivity and
therefore harder to test programmatically.

Use case 3, Analysing a Transcription

Once navigated to the video show.html.erb page, the client side interactivity of the
transcription was tested, which is mostly Javascript and JQuery specific code for the
video show page.

Test
ID

Hyper-
transcript
Component Description Expected Result

1 Search search the transcription matched words become bold,
and the text is highlighted

63

2 Click clicks on hyper-transcript Video starts playing at
corresponding point of the
transcription.

3 play plays and pauses the
video.

when clicking pause it pauses,
when clicking play it plays.

4 auto hi-light words change colour
depending on video
playhead position, while
video playing

words before the one clicked
become back, the word following
becomes grey and the colour
changes as video in playing.

5 auto hi-light words change colour
depending on video
playhead position

Scrubbing video played back and
forth to see text colour change, to
corresponding point in
transcription.

6 Sync Scroll
on playing

Scroll sync between
transcript and video

While video is playing Transcript
scrolls to keep words
corresponding to current
playhead point on screen

7 Sync Scroll
on
playhead
change

Scroll sync between
transcript and video

Scrubbing video played back and
forth moves transcript scroll sync
position

8 Sync Scroll
on word
click

Scroll sync between
transcript and video

clicking to another word moves
transcript scroll sync position

Use Case 4, Selecting and Previewing a Quote Selection

Test
ID

Preview
Component Description Expected Result

8 Select selecting text of
transcription

automatically prepopulate select form
quote text area, and input fields for
duration, input and output.

9 Edit selection edit text of quote in
text area

textarea for quote selection is editable

10 Add Author Add author’s name input field for author is editable

64

to selection

11 Preview click on preview
button

opens pre-populated preview modal
with quote and no video visible (at this
stage)

12 Preview -
Dropdown

Clicking on quote in
preview modal

Video drops down and starts playing
from input, stops at output of selection
and resets playhead to input.

13 Preview -
Dropdown

clicking on quote
while video is
playing

video pauses whilst playing and
disappears, if clicking again video re-
appears and starts playing again.

Use Case 5, Exporting a Video Quote Selection

Test
ID

Export
Component Description Expected Result

13 Export
button

click on export button the button gives visual feedback
that the application is processing
the request

14 Export
Modal

When processing is
complete modal returns
results

Text area with HTML embed code
containing, Style tag with CSS style
for blockquote, script tag with
Javascript code for dropdown,
blockquote HTML element, video
element with URL with word
snippet in the name.

15 trimmed
video

To check the video
trimmed is a valid video
copy url of video in video
tag element in new
browser window and
check if the video plays

video plays and duration match
expected.

6.3. Unit Testing

To test the video modal, unit testing was used and key methods within that modal.

65

6.3.1. Testing the Video Model

Because of the way the application has been implemented the correct working of the
video model is crucial for the rest of the application to work as expected and it was
therefore necessary to put extra care into testing its functionality.

How this was done both manually and with automated testing will now be considered.

 Automated

The model was unit tested using the Rails built in test suite. See appendix for a full
breakdown of tests results.

Main areas that were tested were around validating presence of title and video file
when creating a new video from the upload form. This was tested both in success
and failure cases, such as the edge case where a user might try to submit the form
with empty fields.

The method to parse a string containing the content of an srt file was tested.
Because the content of an srt file changes every time a new video is uploaded, a
more flexible way of testing the consistency of the format was needed. A regular
expression to describe the structure of a hyper-transcript was therefore used, as a
spectrum of arrays containing words. Each word is a Ruby hash that has key value
pairs for time in, time out and text. An array of words is a line from the transcription.
The outer array is the transcription and contains all the lines.

See below an example of a hyper-transcript data structure.

[

 [

{"tc_in"=>0.049, "tc_out"=>1.1656666666666666, "word"=>"God"},

 {"tc_in"=>0.4212222222222222, "tc_out"=>3.399, "word"=>"maintain"},

 {"tc_in"=>0.7934444444444445, "tc_out"=>1.1656666666666666, "word"=>"I"},

 {"tc_in"=>1.1656666666666666, "tc_out"=>2.2823333333333333, "word"=>"and"},

 {"tc_in"=>1.5378888888888889, "tc_out"=>3.026777777777778, "word"=>"Kyle"},

{"tc_in"=>1.910111111111111, "tc_out"=>3.399, "word"=>"show"},

 {"tc_in"=>2.2823333333333333, "tc_out"=>3.7712222222222223, "word"=>"from"},

 {"tc_in"=>2.6545555555555556, "tc_out"=>6.004555555555555, "word"=>"Lewistow
n"},

66

 {"tc_in"=>3.026777777777778, "tc_out"=>5.632333333333333, "word"=>"Montana"}

],

 [

{"tc_in"=>3.399, "tc_out"=>6.5, "word"=>"atomic"}, {"tc_in"=>3.9158333333333335, "
tc_out"=>7.533666666666667, "word"=>"Western"}, {"tc_in"=>4.432666666666667,
"tc_out"=>7.533666666666667, "word"=>"called"}, {"tc_in"=>4.9495000000000005, "
tc_out"=>8.567333333333334, "word"=>"Bochner"}, {"tc_in"=>5.466333333333333,
"tc_out"=>8.0505, "word"=>"since"}, {"tc_in"=>5.983166666666667, "tc_out"=>8.050
500000000001, "word"=>"2008"}

],

 ...

]

A regular expression was used to test the validity of the hyper-transcript data
structure returned by the method convert_srt_to_word_accurate_hypertranscript that
was parsing an srt file and returning the hyper-transcript data structure. A sample srt
file was used for this purpose.

The method to save the hyper-transcript data structure into the database save_to_db
was tested as well.

6.3.2. Testing the Spoken Data API SDK

The spoken data API SDK was tested by initialising it as an object and testing the
most important methods send_by_video_url and retrieve_subtitles_srt by running the
script and examining the results.

#################### How to use, example in 3 steps
1.Creates a spoken data api instance initialising it with `user_id` and API key.
spokenDataAPIObject = SpokenDataAPI.new(ENV['SPOKEN_DATA_USER_ID'],EN
V['SPOKEN_DATA_API_TOKEN'])

2. send video by URL
sending a video by url will return you the spoken data api assigned video ID
uid = spokenDataAPIObject.send_by_video_url("https://youtu.be/e6GFEfJtlnc")
puts "UID: "+uid

3. retrieve captions
use recording uid to retrieve subtitles, when ready.
returns srt file if ready, boolean false if not

67

as a first run when uploading you should expect false as your video is still being pro
cessed.
response= spokenDataAPIObject.retrieve_subtitles_srt(uid)
puts "Response: "+response.to_s
####################

To test that the SDK was retrieving the UID correctly from the response, it was
necessary to wait until the video had been processed, or to test the method with the
UID of the video already in the system.

6.4. Summary

This chapter has considered the testing strategy used to ensure a working
application was delivered and has explored how this was done with a mixture of
manual and automated testing. Focusing on both the integration testing on user
journeys gathered in the requirements stage and the use of unit testing for key
methods of the video modal.

68

7. CONCLUSIONS AND PROJECT EVALUATION
This chapter will give a summary of the achievements of the project, critically
evaluate major parts of the project and discuss suggestions for future work.

7.1. Summary of what the project has achieved

The project has achieved the building of a working web application that meets the
defined user requirements as follows:

• The application returns a searchable hyper-transcript in sync with the video
• Allows the user to select a quote
• Allows the user to preview their quote selection before exporting
• Cut the video in the background once a quote selection is being exported,

using FFMPEG.
• Export the video quote clip as HTML5 mp4 H264
• Generates HTML code to embed the video quote elsewhere

Additionally, the project also:

• Investigated and established a solution to the problems that arise when
working with video in the newsroom

• Built a Ruby SDK for spoken data speech-to-text API
• Refactored hyper-transcript and hyper-audio converter in Ruby
• Tested the application manually and with Selenium
• Deployed on Heroku / Deis - delivered a system manual
• Delivered a user manual - delivered code documentation
• Released the project as an open-source project

7.2. Critical Evaluation of the Project

Four main challenges were identified around the successful realisation of the project;
investigating the problem, providing a comprehensive solution, identifying the best
system to generate video transcriptions and last but not least provide a suitable
output.

These challenges will now be considered individually.

7.2.1. Investigation of the Problem

The problem of optimising the use of video in the newsroom was explored with an
iterative approach and a series of rapid prototypes, presented to and discussed
regularly with the users.

69

Use of NLP APIs

The use of natural language processing to give an insight into the transcriptions, was
an interesting experiment. However, further research into how to correlate and
interpret the results returned from the NLP API is needed.

Use of Summarisation APIs

The lack of punctuation proved to be a problem when using summarisation APIs,
because they work by ranking sentences delimited by full stops. However an efficient
solution was identified in considering the timecode line breaks of the subtitle file as
sentences to gain a useful approximation. With further research, it was discovered
that the automatic suggestion of quotes was not a necessary requirement for
journalists in this context. But rather to be able to find quotes, implementing a word
search was a sufficient solution.

7.2.2. A comprehensive solution

Because of the iterative nature of the investigation the resulting application, grounded
on solid research and insight, has proved to be a successful comprehensive solution
to a real newsroom problem.

7.2.3. Video Transcriptions

With an iterative approach and the use of rapid prototyping, the project successfully
investigated the possibilities around facilitating and optimising the use of video in the
newsroom. The initial hypothesis that transcription would have been useful in giving a
way into the content, was in fact correct.

SpokenData was chosen as the most appropriate solution due to it’s ease of use and
flexibility discussed in previous chapters. However, to ensure a modular component
based design, the RESTful API URLS of the speech to text API were implemented as
a separate component through an interface that would allow a change in the speech-
to-text API in the future should a future need arise.

7.2.4. Output

Great care was put into delivering an output of the video quote as something that
could easily be integrated with the existing system with minimal effort, hence the
decision to trim the video and generate an HTML code that the user can embed
elsewhere in their news article.

Particular attention was also put into using FFMPEG to create a H264 mp4 video file
compliant with HTML5 standards, to ensure greater cross browser compatibility.

70

7.3. Future Work

The project so far has satisfied the current project goals. However some suggestions
will now be considered for future work, should time allow.

7.3.1. Add Support for Audio File

FFMPEG and spoken data already support audio so it is simply a matter of adding
this for the video and to quote Rails’ model paperclip settings for file attachment of
the audio file type.

7.3.2. HTML5 Video, OGG and WebM

The system exports as MP4 H264. HTML5 supports a number of video sources,
which means that the future implementation of the system could also transcode the
video into ogg and WebM to ensure greater cross browser compatibility.

7.3.3. Twitter export

With the very recent introduction of support by the Twitter API for tweets with video
attachments, it could be an interesting output option for quickQuote. A set of
constrains a round characters count, video file size and length would need to be
taken into account.

7.3.4. Restrict Access to @times.co.uk Addresses

Despite the project residing on an internal domain known only to Times employees, it
would be recommended to implement a restriction on the user login that checks
against a valid @times.co.uk address.

7.3.5. More Tests

Given more time, a more comprehensive set of unit and integration tests could be
written making use of the built-in facilities provided by the Rails framework.

7.4. Wrap-up

Delivering an application that provides a comprehensive solution for journalists
working with video in the newsroom is a challenging task. However grounded on
solid research, an iterative approach that made ample use of rapid prototyping and
following a short feedback loop with the users, the project has not only investigated
an optimal solution but also produced a working application that satisfies all of the
requirements.

71

Furthermore the author believes the insight from this investigation could provide a
starting point for more efficient ways of working with video through the use of
transcriptions.

72

8. SYSTEM MANUAL
Demo and details of the application can be found here - times.github.io/quickQuote

This is a step by step plan on how to install quickQuote. It will get you to a point of
having a deployed instance on Heroku.

8.1. Prerequisite

You will need to have the following installed

• Ruby
• Ruby on rails
• Git

o Git installed locally
o Github

• Heroku
o Heroku account
o Heroku installed locally

• ffmpeg (for running development version locally)
o MySql
o MySql - Sequel Pro

Showing how to install these is outside of the scope of this system manual.

8.2. System dependencies

a list of most relevant system dependencies

• ruby version 2.0.0
• rails version 4.2.0
• ffmpeg version 2.7.1

– –enable-shared
– –enable-pthreads
– –enable-gpl
– –enable-version3
– –enable-hardcoded-tables
– –enable-avresample
– –cc=clang
– –host-cflags=
– –host-ldflags=
– –enable-libx264
– –enable-libmp3lame
– –enable-libvo-aacenc
– –enable-libxvid
– –enable-libvorbis

73

– –enable-libvpx
– –enable-vda

• Video js 4.12.8 cdn
• jquery 3.0.0-alpha1 cdn
• bootswatch paper bootstrap.min.css 3.3.5 cdn
• ajax jquery 1.11.2 cdn
• bootstrap js 3.3.5 cdn

see Gemfile for list of rails gem dependencies.

8.3. Configuration

8.3.1. API keys

You’ll need to make the following accounts to get the API keys

• Amazon S3
– production
– development

• spoken data API
– production
– development

• Google API
– production
– development

• local mysql database for testing - optional

If not using Heroku, but deploying Heroku style, for instance on Deis, you’ll also need
a separate database.

optional - amazon RDS

• production
• development

spoken data

Getting two API keys for spoken data requires two email addresses to make two
distinct account(development and testing can use the same address), it is possible to
just use one account for production and development, but I’d advise against as it can
get very confusing very quickly if you try to distinguish on their dashboard which
videos you uploaded in development and which ones are your users’.

74

Google API key

In the Google developer console, create a new project, and get the client id and client
secret.

You’ll also need to enable Google+.

You’ll also also setup a call back URI, such as

http://name_of_your_application.herokuapp.com/auth/google_oauth2/callback

You’ll need a URI for the deployed application and one for development. Google
does not support adding localhost, so you’ll need to setup a custom local url.
explained below

Local(domain(name(for(use(in(development(
For use during development it is required to setup a local DNS for your local host
address that maps to your localhost.

In terminal

$ sudo nano /etc/hosts

in the hosts file

127.0.0.1 localhost **your local domain name**.com

You can use same details for development and testing. This needs to be added to
the Google Console API as the redirect URL. so that in config/application.yml you
can set the environment variable to be:

REDIRECT_URIS: 'http://your_local_domain_name.com:3000/auth/google_oauth2/c
allback'

testing(optional(
It can be useful to get a dummy gmail address without step two authentication for use
with selenium for testing.

These need to be added to the config/application.yml file that contains the project
environment variables

Dummy Gmail Logins for testing
LOCAL_DOMAIN: 'http://your_local_domain_name.com:3000'
TEST_EMAIL: 'whatever@gmail.com'
TEST_EMAIL_PASSWORD: 'password'

more details on how to make application.yml below

75

8.3.2. Add API Keys to project

we are using the figaro gem to deploy our environment variables onto Heroku. add
API keys to a file config/application.yml

dividing by production and development.

$ bundle exec figaro install

creates the config/application.yml and adds it to .gitingore.

you can use the following template to fill in the details in config/application.yml

GOGLE_PROJECT_ID: ''

test:
 #Google Project ID, OAuth 2.0 client ID:
 GOOGLE_CLIENT_ID_DEVELOPMENT: ''
 GOOGLE_CLIENT_SECRET_DEVELOPMENT: ''
 REDIRECT_URIS: 'http://your_local_domain.com:3000/auth/google_oauth2/callbac
k'
 JAVASCRIPT_ORIGINS: 'https://www.example.com'
 #MysQL db - Local
 DB_TEST_USERNAME: 'root'
 DB_TEST_PASSWORD: ''
 DB_TEST_DB: ''
 DB_TEST_END_POINT: '127.0.0.1'
 DB_TEST_PORT: '3306'
 #S3 Bucket
 AMAZON_S3_ACCESS_KEY_ID: ''
 AMAZON_S3_SECRET_ACCESS_KEY: ''
 AMAZON_S3_BUCKET: ''
 #Spoken Data API
 SPOKEN_DATA_USER_ID: ''
 SPOKEN_DATA_API_TOKEN: ''

development:
 #Google Project ID, OAuth 2.0 client ID:
 GOOGLE_CLIENT_ID_DEVELOPMENT: ''
 GOOGLE_CLIENT_SECRET_DEVELOPMENT: ''
 REDIRECT_URIS: 'http://your_local_domain.com:3000/auth/google_oauth2/callbac
k'
 JAVASCRIPT_ORIGINS: 'https://www.example.com'
 #MysQL db - Amazon RDS
 RDS_USERNAME_DEVELOPMENT: ''
 RDS_PASSWORD_DEVELOPMENT: ''
 RDS_DB_DEVELOPMENT: ''
 RDS_END_POINT_DEVELOPMENT: ''

76

 RDS_PORT_DEVELOPMENT: ''
 #S3 Bucket
 AMAZON_S3_ACCESS_KEY_ID: ''
 AMAZON_S3_SECRET_ACCESS_KEY: ''
 AMAZON_S3_BUCKET: ''
 #Spoken Data API
 SPOKEN_DATA_USER_ID: ''
 SPOKEN_DATA_API_TOKEN: ''

production:
 #Google Project ID, OAuth 2.0 client ID:
 GOOGLE_CLIENT_ID: ''
 GOOGLE_CLIENT_SECRET: ''
 REDIRECT_URIS: 'http://the_name_of_your_app.herokuapp.com/auth/google_oaut
h2/callback'
 JAVASCRIPT_ORIGINS: ''
 #MysQL db - Amazon RDS
 RDS_USERNAME: ''
 RDS_PASSWORD: ''
 RDS_DB: ''
 RDS_END_POINT: ''
 RDS_PORT: ''
 #S3 Bucket
 AMAZON_S3_ACCESS_KEY_ID: ''
 AMAZON_S3_SECRET_ACCESS_KEY: ''
 AMAZON_S3_BUCKET: ''
 #Spoken Data API
 SPOKEN_DATA_USER_ID: ''
 SPOKEN_DATA_API_TOKEN: ''

8.4. How to run the test suite

There is a Selenium script to programmatically test login and file upload.

To run it from root of the application use the following command.

$ ruby /test/selenium/selenium_test_video_upload.rb

For this to work the Rails server needs to be running. rails s in terminal from root of
application.

To unit test the Video model.

$ rake test test/models/video_test.rb

77

8.5. Database creation - for local development and testing.

This can be used for testing as well.

• Install mysql locally os x
• To start the server System preferences > MySQL > Start MySQL Server
• Use Squel Pro (or equivalent) to connect to the local MySQL db server.

 #MysQL db - Local
 DB_TEST_USERNAME: 'root'
 DB_TEST_PASSWORD: ''
 DB_TEST_DB: ''
 DB_TEST_END_POINT: '127.0.0.1'
 DB_TEST_PORT: '3306'

For production, the database is created as part of the deployment script.

8.6. Deployment instructions

To deploy onto heroku cd into the application root folder, login into heroku.

$ heroku login

Then run one of the deployment scripts. Before running the script, inspect the script
to customise the deployment to your needs.

When deploying the application for the first time run.

$./first_time_deploy.sh

For subsequent deployments you can use

$./deploy.sh

If after the first deployment you want to deploy as new application run

$ new_deploy.sh

Note that this last one, does not delete the previous application, it simply removes
the git remote. if you wish to delete it, you’d need to run heroku apps:destroy --app
$app --confirm $app where $app is the name of the app you want to delete.
Alternatively you can log in to your Heroku account and delete it from there.

78

9. USER MANUAL
“quickQuote” is a web application to select video quotes from a video, to embed in an
article. It uses Spoken Data API to generate a transcription of the video. The user
can then search, and select a quote. This can be exported, and the application trims
the video, and generates the HTML code to embed it with the corresponding part of
the video associated as a dropdown.

9.1. Login

Authentication is done through Google Auth, no need to register, just login with user
Google credentials.

79

Login

9.2. Uploading a video

Once logged in the navigation bar displays two new menus Videos and Upload
videos.

Click on Upload videos to get started.

Upload

80

9.3. Viewing videos

You can check the status of a video by clicking on Check Status.

From there you can navigate to individual videos.

Videos

9.4. Hypertranscript

9.4.1. Search Video

You can search for specific words in the transcription. The line containing a match is
highlighted and the word becomes bold.

81

Search

9.4.2. Clickable transcription

The text in the hypertranscript is sync with the video playhead. Clicking on the
transcription takes you to the corresponding point in the video.

As the video playes the words change color to show the corresponding text.

82

Hypertranscript

9.5. Select a quote

To select a quote simply select it with your mouse. The Quote text area auto
populates with the text you’ve selected.

83

Selection

9.5.1. Edit a quote

In this example, the text to speech API was very accurate, but we notice that the
sentence doesn’t add up, and if we play the clip we can hear it missed the word
“law”.

To fix this we can edit the selection of the quote for accuracy by editing the text in the
Quote text area.

84

Edit the text of a quote selection

9.6. Preview

To quickly preview what our quote will look like once published, we can click on
preview, and a pop up window with a preview of the quote will come up.

85

Preview Quote

Clicking on watch video triggers the dropdown, and we see the video corresponding
to the text we’ve selected.

86

Preview Video

9.7. Export

Once pleased with our selection and ready to publish, click on the export button.
Another pop up window comes up, this time containing the HTML embed code, to
insert in your article.

87

Export

9.7.1. Embedding the code

To demonstrate embedding the code, with use the JSFiddle HTML browser based
preview editor.

As you can see the embed code renders the quote with a link to the dropdown of the
video.

88

Export Quote

If we click on watch video the video segment comes down.

Export Dropdown

89

As you can see from the length of the clip in this example (7 seconds) the clip has
been trimmed to the corresponding text of the quote to make for a faster loading of
the video file.

90

10. OUTLINE OF PHASES
An outline of the phases of the project.

1. Preliminary research
1. Initial stack research - June

2. Investigation into problem domain Hypothesis and prototype
2. hyper transcript prototype - end June begin July
3. NLP Prototype (Budget speech) - beginning July

1. NLP summarisation
2. NLP Keywords
3. NLP Concepts
4. NLP Entities

4. Define requirements.- beginning July
1. draft proposal
2. draft functional requirements - beginning/mid July

3. Implementation
5. Set up continuous deployment system- mid July
6. Decide testing strategy - mid July
7. Baseline project - mid/end July /mid August

1. login
2. Video upload
3. Retrieve captions
4. Dashboard
5. Select a quote
6. Preview
7. Export video and text file
8. Export to HTML embed code

8. Documentation and refactoring - beginning/mid August
1. Refactoring and tidying up
2. code documentation
3. system manual
4. user manual

9. use case
10. Top 5 best quotes from “Donald Trump”

4. Writing up Report - end August

91

11. INTERNSHIP TIMELINE

Date
Week
Number Tasks / Phase

June 0 Preliminary research + BBC Hackathon

29th June 1 Hypertranscript + NLP prototype

6th July 2 Budget prototype

13th July 3 Define scope and requirements

20th July 4 Baseline project

27th July 5 Baseline project

3rd August 6 Baseline project + documentation

10th
August

7 Documentation (user and system manual, code
documentation)

17th
August

8 Write up and refactoring

92

12. ABOUT RUBY ON RAILS MVC
Ruby on Rails is an MVC framework and it was chosen because of the speed it gives
when prototyping.

MVC stands for Model View Controller, and is a way of separating the concerns of
various parts of a web application.

The model contains abstract classes, with the business logic. The controller initialises
the classes as needed and the views are used by the controller to populate templates
as they contain any “display logic”.

Rather than giving an explanation of the framework as traditionally proposed by
conventional books on the subject (Bigg et al. 2015), this paragraph will instead give
an overview of the flow of data in the Rails framework from a user request from the
browser through the Rails MVC framework (Passarelli Pietro 2013).

This will be useful to better understand the design and implementation chapter.

The user requests a page in the browser through a URL. Rails web server - Rack -
handles the request. Firstly, it looks in the public folder, which is at root level of the
application, then if it does not find it, it passes on the request to the routes.

The public folder contains static HTML and error pages.

The routes matches the URL to the action controller that handles CRUD, creates
read update and delete methods.

The controller, initialised any object from the model classes, it also contains any
conditional logic, such as ‘display this’ if the user is logged in, otherwise it will display
a login page.

The controller uses instance variables to communicate with the views.

The model in Rails is implemented as Active Record Object Relational Manager
(ORM).

The ORM handles the connection with the database and through migrations, Rails
writes model classes as tables into the database, consistent with Object oriented
principles where data modelling is class modelling.

The controller then uses the default Ruby erb templating to populate the views with
instance variables. The views contain any display logic, and are rendered as HTML,
which is then returned to the browser.

Rails was originally designed to work following RESTful principles, to provide
navigation between pages. This is different from modern one page frameworks such

93

as Angular or React where parts of the page are updated without reloading the whole
of the page.

It will become clear in the implementation chapter how AJAX, JQuery and Rails
routes were used to achieve this.

94

13. RAILS AND CLIENT SIDE INTERACTIVITY WITH
AJAX
In recent years there has been an increasing need for client side interactivity with
client side Javascript and JQuery as well as the so called “single page applications”
such as Angular and React.

There was a need for this project to work this kind of client side interactivity into the
Rails framework. Rather then add one of the frameworks mentioned above, that
although very powerful have quite a steep learning curve, a combination of JS,
JQuery and AJAX were used instead.

AJAX stands for Asynchronous JavaScript and XML and is a way to send a request
to the server of the application and update only part of the application without having
to reload the page.

In the AJAX request we specify a URL and HTTP method to send the request to.

Here is an overview of an AJAX request with some pseudo-code in the inline
comments.

//prep some variables to send in the ajax request
$.ajax({
 //setup and send the request
 type: 'POST',
 url: // the RESTfull url we are sending the request to,
 data: // a json object,
 dataType: 'json',
 async: true
 }).done(function(data){
 // specifies wthat to do with the call back function
 // for instance updating an html element on the page
 });

Then in the routes in Rails, we specify how to handle such requests when it comes
in.

The routes specify the URL from which we receive the request and which controller,
and which controller method should then handle it.

In the controller, the specific method handles the request, and returns data back to
the request.

This could be as simple as a notice saying the request has been successful, or could
be more complex by sending back a JSON with some processed data.

95

On the client side, when AJAX receives the response, the second part of AJAX
callback can take place. And through JS or JQuery this could do something like
updating or creating some HTML element on the page.

This chapter will now discuss this implementation in greater detail.

96

14. TEST RESULTS AND TEST REPORTS

14.1. Video Mode Unit Tests

VideoTest: test_Should_save_a_video,_with_a_valid_video_file_attachment

VideoTest: test_should_not_save_video_without_video_file_media

VideoTest: test_Should_save_HyperTranscript_to_database

VideoTest: test_should_not_save_video_without_title

VideoTest: test_Should_convert_srt_string_into_hyperTranscript_data_structure

Finished in 8.169125s, 0.6121 runs, 0.7345 assertions

5 runs, 6 assertions, 0 failures, 0 errors, 0 skips

97

15. CODE LISTING

15.1. parsing srt file into hypertranscript data structure

a method that takes the content of srt file as a string and outputs a ruby hash/json
data hypertranscript structure.

require 'srt'
 # requires srt gem
 # parses srt string into hypertranscript ruby hash/json

 def convert_srt_to_word_accurate_hypertranscript(srt_string)
 file = SRT::File.parse(srt_string)
 srt_hash={}
 srt_hash['lines']={}
 line_number = 1
 file.lines.each do |line|
 srt_hash['lines']["#{line_number}"] ={}

 # array of words in the line
 words_in_a_line = line.text.join(" ").split(" ")

 puts "words_array_size: "+words_in_a_line.size.to_s

 number_of_words_in_line = words_in_a_line.size
 #duration of line time start - time end
 line_duration = line.end_time - line.start_time

 #the duration of the line divided by the number of words in the line
 # time increment
 average_word_duration = line_duration / number_of_words_in_line

 # to calculate the number of letters in a sentence
 number_of_letters_in_a_sentence =0
 # we loop through the array of words, and add up the size of each word
 words_in_a_line.each do |word|
 number_of_letters_in_a_sentence += word.size
 end

 duration_for_each_letter = line_duration / number_of_letters_in_a_sentence

 word_start_time = 0
 word_counter =0
 srt_hash['lines']["#{line_number}"]=[]
 words_in_a_line.each do |word|
 # word duration is equal to number of letters
 word_duration = word.size * average_word_duration
 word_start_time = line.start_time + word_counter * average_word_duration # 1000 if you want it in
milliseconds?
 # or
 # word_time = average_word_duration line.start_time

 # word_start_time += word_duration + word_time
 word_end_time = word_start_time+word_duration

98

 corresponding_word = line.text.join(" ").split(" ")[word_counter]

 word_hash ={}
 word_hash['tc_in'] = word_start_time
 word_hash['tc_out'] = word_end_time
 word_hash['word']= corresponding_word
 srt_hash['lines']["#{line_number}"] << word_hash

 word_counter +=1
 end

 line_number +=1
 end
 return srt_hash

 end

15.2. save_quote_with_video_snippet

Method used in video Quote controller for saving quote from ajax request.

 def save_quote_with_video_snippet
 # params hash quoteDetails field parsed as json / ruby hash
 data = (JSON.parse(params["quoteDetails"]))
 # retrieve relevant video from video id in params hash
 @video = Video.find(data["video_id"])
 # create quote associated with that video
 @quote = @video.quotes.new
 # give time code in, timecode out, duration attribute to quote, using value in params hash and converti
ng it to float
 @quote.tc_in = data["tc_in"].to_f
 @quote.tc_out = data["tc_out"].to_f
 @quote.duration = data["duration"].to_f
 # give time text and author attribute to quote, using value in params hash and converting it to string
 @quote.text = data["text"].to_s
 @quote.author = data["author"].to_s
 # saves the quote
 @quote.save

 # Exporting Video
 # naming video segment associated with quote, using id of quote
 @snippet_file_name = "snippet_#{@quote.id}.mp4"
 # defining temporary location to store cut video
 @path_to_file= Rails.root.join('public',"#{@snippet_file_name}").to_s
 # system call to cut video with ffmpeg. the video is saved in the public folder of the applciaiton
 `ffmpeg -i 'http://#{ENV['AMAZON_S3_BUCKET']}.s3.amazonaws.com/videos/media/#{@video.id}/#{
@video.media_file_name}' -ss #{@quote.tc_in} -t #{@quote.duration} -vcodec libx264 -acodec aac -asy
nc 1 -strict -2 #{@path_to_file}`
 # to use paperclip gem to save the video segment, snippet onto amazon s3 we have to open the vide
o segment we just cut into the public folder.
 # iterate through the file, and associate that with @quote.snippet.
 File.open(@path_to_file, "r") do |f|
 # @quote.snippet is a paperclip method to define the file in attachment.
 @quote.snippet = f
 end

99

 #save the quote
 @quote.save
 # associate the link of the quote video segment as uploaded onto amazon s3 through the paperclip g
em to the quote
 @quote.link = "http://#{ENV['AMAZON_S3_BUCKET']}.s3.amazonaws.com/videos/quotes/#{@quote.i
d}/#{@snippet_file_name}"
 #save the quote
 @quote.save
 # delete file temporary_snippet.mp4
 `rm -rf #{@path_to_file}`
 # return the link of the video segment on s3 to the view through the ajax call back
 @temp1 = @quote.link
 temp = {response: @temp1}
format support.
 respond_to do |format|
 format.json { render json: temp, status: :ok} #
 format.js { render :nothing => true }
 end # end of respond to format
 end

15.3. spoken data ruby SDK
=begin
an attempt to make a SDK for the spoken data API.
spokenData API ruby SDK v2
@author : Pietro Passarelli
@date: 22/07/2015
@url: http://spokendata.com/api

It provides an SDK for the spokendata API.
It does not implement all of the RESTful methods,
it implements
 - retrieving srt file of recording if ready **`retrieve_subtitles_srt(recording_id)`** if ready returns srt file s
tring, if not returns false boolean.
 - send video by URL **`send_by_video_url(video_url)`** which returns the video uid,that you should sa
ve for later retrieval.
 - also implemented getting **list of recordings** (not in use in example)
 - **`get_recording_by_recording_id`**, returns a recording object (also used as helper method)

you can test this as rails runner, save this file in the `lib` folder
and run from terminal, fom root of the project
 rails r lib/spokenDataAPI.rb

to use it in rails add it as a model `spokenDataAPI.rb`
=end

 require 'net/http'
 require 'open-uri'
 require 'json'
 require 'nokogiri'

 ####################
 class SpokenDataAPI < ActiveRecord::Base
 belongs_to :video

100

 @@BASE_URL ="http://spokendata.com/api/"
 #Setup the endpoints
 @@ENDPOINTS = {}

 #recordingList returns all user recordings --> this contains `status` , either 'processing' or 'done'
 @@ENDPOINTS['recordingList']="/recordingList"

 ##################### initializer
 def initialize(user_id, api_token)
 @@USER_ID = user_id.to_s
 @@API_TOKEN = api_token.to_s
 end

 ##################### helper methods
 # external libraries helper methods
 # open URLs
 def open(url)
 Net::HTTP.get(URI.parse(url))
 end

 # parses url / XML (as received by the API)
 # returns a ruby hash
 def parse_xml(url)
 Rails.logger.info "url in parse_xl #{url}"
 # IMPORTANT: there is an issue with the xml, the encoding returned by the API is written `utf8` inst
ead of `utf-8`. and that trips up the parser. enche the substitution
 result_string = open(url).gsub("utf8","utf-8")
 # Parse the xml with nokogiri
 nokogiri_xml_document = Nokogiri::XML(result_string)
 # transform the xml into a ruby hash using built in active support methods.
 result = Hash.from_xml(nokogiri_xml_document.to_s)
 # `data` tag encapsulate the rest of the keys /tags/
 return result['data']
 end

 ##################### API Query builder helper methods
 def get_base_url
 return @@BASE_URL
 end

 def get_api_key
 return @@API_TOKEN
 end

 def get_user_id
 return @@USER_ID
 end

 def get_base_api_request
 url = get_base_url + get_user_id+"/" + get_api_key
 return url
 end

 ##################### getter methods recordings list
 # def get_user
 # url = get_base_api_request + @@ENDPOINTS['user']

101

 # xml_Hash = parse_xml(open(url))
 # return xml_Hash #['user'] #TODO to check if it's actual combination or not some nested ['var']['user
']
 # end

 def get_recordings_list
 url = get_base_api_request + @@ENDPOINTS['recordingList']
 result = parse_xml(url)
 return result['recordings']['recording'] # TODO: fix this
 end

 # gets the recording based on id
 # the id is the one defined by spokendata
 # returns the whole recording object.
 def get_recording_by_recording_id(recording_id)
 url = get_base_api_request + @@ENDPOINTS['recordingList']
 Rails.logger.info "url: #{url}"
 result = parse_xml(url)
 Rails.logger.info "result: #{result}"
 recordings = result['recordings']['recording'] # TODO: fix this
 # compares `id`
 recordings.select do |k,v|
 if k['id'].to_i == recording_id.to_i
 result = k
 end
 end
 #retursn the recording
 return result
 end

 ##################### getter method recording status
 # helper method for get_recordings_status
 # takes in a recording object
 # returns true if "done"
 # returns false if "processing"
 def get_recording_status(recording)
 recording_status = recording['status']
 if recording_status =="done"
 return true
 elsif recording_status =="processing"
 return false
 else
 "There was an error assessing the status of the recording"
 end
 end

 # from recording `id` return boolean for status of the recording.
 # true if "done" false if "processing"
 def recording_processed?(recording_id)
 Rails.logger.info "recording_id: #{recording_id}"
 recording = get_recording_by_recording_id(recording_id)
 return get_recording_status(recording)
 end

 ##################### getter methods srt
 # helper method for retrieve_subtitles_srt
 def get_srt(recording_id)

102

 url = get_base_api_request.to_s + "/recording/#{recording_id.to_s}/subtitles.srt"
 return open(url)
 end
 # retrieves subitles srt
 # takes in recording_id
 # returns false if recording status is "processing".
 # returns string containing srt file if status is "done".
 def retrieve_subtitles_srt(recording_id)
 if recording_processed?(recording_id)
 return get_srt(recording_id)
 else
 false
 end

 end

 ##################### send video for captioning
 # takes in the location url of the video, for instance if you are using amazon S3 this is the full path, if u
sing youtube is just normal URL, also works with Vimeo.
 # returns the recording id, to be able to check status and retrieve captions subsequently, best to save
this in the db
 # language options are
 # from API documentation:
 # RECORDING-URL - YouTube or any direct URL of a media file
 # LANGUAGE - english | english-broadcastnews | english-test | russian | chinese-ma | spanish-us | c
zech | czech-medicine | czech-broadcastnews | slovak
 # ANNOTATOR-ID = id of assigned annotator (leave empty if no annotator)
 # if you are working with languages other then english you could modify params of this url to change l
anguage option.
 def send_by_video_url(url)
 request_url = get_base_api_request.to_s + "/recording/add?url=#{url}&language=english"
 response = parse_xml(request_url)
 # example response from api #{"message"=>"This media URL and language have already been ent
ered.", "recording"=>{"id"=>"5747"}}
 # return response['recording']['id']
 Rails.logger.info "response: #{response.inspect}"
 return response.inspect
 end

 end # end of class SpokenDataAPI
 ####################

 # #################### How to use, example in 3 steps
 # # 1. Create a spoken data api instance initialising it with user_id and API key.
 # # you'll find these in http://spokendata.com/api once you have logged in.
 # # use enviroment variables to store user id and api key, and remember to put the file in `.gitignore`
 #
 # spokenDataAPIObject = SpokenDataAPI.new(ENV['SPOKEN_DATA_USER_ID'],ENV['SPOKEN_DA
TA_API_TOKEN'])
 #
 #
 # # 2. send video by URL
 # # sending a video by url will return you the spoken data api assigned video ID
 # uid = spokenDataAPIObject.send_by_video_url("https://www.youtube.com/watch?v=u5CVsCnxyXg")
 # puts "UID: "+uid
 #
 # # 3. retrieve captions

103

 # # use recording id / uid to retrieve subtitles, when ready. (will return false if they are not ready)
 # # (good idea to save uid in db for checking on processing of video captions)
 # # returns srt file if ready, boolean false if not => you can `if response != false` etc..
 # response= spokenDataAPIObject.retrieve_subtitles_srt(uid)
 # puts "Response: "+response.to_s
 # ####################

15.4. Deployment script

first_time_deploy.sh, deploy.sh, new_deploy.sh

15.4.1. deploy.sh

#!/bin/bash
#chmod +x deploy.sh to make script executable
echo "Launching Heroku deployment script"

if app already been created using this to rename
#heroku apps:rename $appName

echo "set enviroment variables from application.yml"
figaro heroku:set -e production

echo "bundle install"

#bundle exec figaro install

bundle install

#echo "precompiling rails assets"
#rake assets:precompile

git add and commit, optional
echo "git add -A"
git add -A

echo "git commit"
git commit -m"commit before pushing to heroku"

echo "pushing onto github"
git push

echo "git push heroku master"
git push heroku master

echo "migrating PG db on heroku"

104

heroku run rake db:migrate

echo "heroku ps:scale web=1 worker=1"
The worker needs to be on 1 for ffmpeg to work.
heroku ps:scale web=1 worker=1

echo "opening deployed website"
heroku open

echo "heroku status to see if there's any issue with the system "
heroku status

herokuAppNameURL=`heroku info -s | grep web_url | cut -d= -f2`

echo "_________________________IMPORTANT__________________________
_____________________"
echo "add this URL to Google Console Redirect URIs: ${herokuAppNameURL}auth/
google_oauth2/callback"

echo "press any key to run heroku logs stream"

read anykey

echo "running live stream of heroku logs"
heroku logs -t

15.4.2. first_time_deploy.sh

#!/bin/bash
echo "Launching Heroku first time deployment script"

#echo "give a name to your app(no spaces):"

#read appName
#heroku login

#comment out after the first time of deployment, unless you want to create a new inst
ance
#echo "add this URL to Google Console Redirect URIs: http://${appName}.herokuap
p.com/auth/google_oauth2/callback"

#echo "running heroku create ${appName}"

105

#heroku create $appName

echo "running heroku create getquickquote"
heroku create --buildpack https://github.com/ddollar/heroku-buildpack-multi
or use line below with a name you'd like to give to your application, fyi getquickquot
e is already taken
#heroku create getquickquote --buildpack https://github.com/pietrop/heroku-buildpack
-multi

echo "running deployment script"
sh ./deploy.sh

15.4.3. new_deploy.sh

#!/bin/bash
echo "removing existen heroku remote"
git remote rm heroku

#heroku apps:destroy --app $app --confirm $app

sh ./first_time_deploy.sh

106

16. HYPERTRANSCRIPT

16.1.1. Hyper Audio Converter Algorith analyses and refactoring.

Analyses of Hyper Audio Converter javascript Algorithm (Mark Boas 2013b), and
refactoring into ruby code.

Rationale: as JS is client facing code, re-factoring into ruby code, allows to package it
as a ruby gem component, and to do the parsing in the model of rails MVC.

16.1.2. Hyper Audio Converter JS

Hyperaudio converter It is a one page application stored in index.html in JS using
JQuery and PopcornJS libraries in js project folder.

The original code can be found at
https://github.com/maboa/hyperaudioconverter/blob/master/index.html

hyperaudio converter

Parser is a modified version of popcorn.parserSRT.js

16.1.3. Code Analyses

Let’s look at this with a top down approach,

107

Button clicking

If we consider the last part of the code, it is adding the click funcioinality to the button
element with the transform ID. Seen in the body of the index.html as Transform.

 $('#transform').click(function() {
 var srt = $('#subtitles').val();
 var ht = parseSRT(srt);
 $('#htranscript').val(ht);
 });
 });
 </script>

Then it grabs the value of the text are with id subtitles and stores it into a variable srt.
In the GUI this is where you paste the content of your srt file. The same thing could
have been done with a file upload.

var srt = $('#subtitles').val();

This can be found in index.html as <textarea id="subtitles" class="entry-content"
rows="40" cols="60"></textarea>

The next 3 lines setup a regex regular expression to remove any new line carachters
\n.

Now, this below is the line we are interested in as it is where the method
parseSRT(srt); is called, which is ultimately what does the parsing of the subtitle file,
and what we are interested in refactoring into Ruby.

var ht = parseSRT(srt);

This is where the result of the parsing, parseSRT(srt); method previously stored in
the varial ht is added to the element with htranscript ID. using the .val(ht); method.

$('#htranscript').val(ht);

The .val(ht); method changes the value of a text field. In this case as mentioned
above the element with ID htranscript, which corresponds to the HTML elment in
index.html <textarea id="htranscript" class="entry-content" rows="40"
cols="60"></textarea>.

The function parseSRT(srt);

Function(Argument(
First thing first this method takes in a data variable, which is a string, the content of
an srt file.

108

Here is an example of what an srt file looks like:

1
00:00:00,680 --> 00:00:04,660
can it is an honor have the chance to
talk with you thank you very much

2
00:00:04,660 --> 00:00:07,859
pleasure gonna start with big picture

Return(Statment(
Then let’s look at what it returns, it returns a outputString variable, which is defined
as

outputString += ''+stext+' ';

We will look at how we got there in a second, but for now we can just consider that
outputString contains the text of the srt file transformed into milliseconds word
accurate span tags. Every word has the corresponding time starting point in the m
attribute of the span tag.

function(Variables(
 var i = 0; //int
 var len = 0; // int
 var idx = 0; //int
 var line; // array
 var time; //floats
 var text; // array
 var sub; //JS Object

function(toSeconds(
Now that we have a sense of what this function takes in as a argument parameter
and returns, let’s go to the rest of the code from the top.

The toSeconds funciton, does what it says on the tin. It takes in a timecode from .srt,
something ijn the form of 00:00:04,660 and converts it into seconds with fractional
milliseconds

As explained in the comments of the code:

//Simple function to convert HH:MM:SS,MMM or HH:MM:SS.MMM to SS.MMM

Split(on(line(breaks(
// Here is where the magic happens
// Split on line breaks

109

 lines = data.split(/(?:\r\n|\r|\n)/gm);
 len = lines.length;

The lines variable splits the string containing the srt file on new line, pattern matching
with a regex, taking into a account compatibility with windows carriage return \n\r

This returns an array of lines. The variable len tells you how many lines there are in
the subtitle file, by using the .length method on the lines array.

loop(
javascript for(i=0; i < len; i++) {

Loops over the srt lines array using len, the number of lines to define the upper limit
of the loop.

The two previously declared variables sub and text are then initialised as follows.

sub = {};
text = [];

sub is a javascript object and text as an array.

The object sub is then given an attribute of .id

 sub.id = parseInt(lines[i++], 10);

 the method `parseInt() - http://www.w3schools.com/jsref/jsref_parseint.asp

 // Split on '-->' delimiter, trimming spaces as well
 time = lines[i++].split(/[\t]*-->[\t]*/);

 sub.start = toSeconds(time[0]);

The variable time splits the srt timecode start and finish uses a regular expression to
HH:MM:SS,MMM --> HH:MM:SS.MMM, isolating start time code and end timecode

sub.start is then associated with the first one.

however to calculate sub.end

// So as to trim positioning information from end
 idx = time[1].indexOf(" ");
 if (idx !== -1) {
 time[1] = time[1].substr(0, idx);
 }
sub.end = toSeconds(time[1]);

110

Marking(it(word(accurate(

1.get&all&words&in&array&
var swords = sub.text.split(' ');

2.get&duration&of&line&
var sduration = sub.end - sub.start;

3.&word&time&estimation&
divided duration of line, for number of words in it.

var stimeStep = sduration/swords.length;

4.&determine&lenght&of&word&
 var swordLengths = [];
 var swordTimes = [];
 var totalLetters = 0;

While is less then the number of words. loop iterating through the words in the line
counting the letters in the whole of the sentence, by counting length of each word,
and adding it up

swordLengths is an array of the length of the words, guess would it would look like [6,
5, 3] where 6 would be the length of the first word, 5 of the second word in the line
etc..

 for (var si=0, sl=swords.length; si<sl; ++si) {
 totalLetters = totalLetters + swords[si].length;
 swordLengths[si] = swords[si].length;
 }

letterTime is calculated by dividing the total number of letters in a line, by the duration
of a line.

var letterTime = sduration / totalLetters;
var wordStart = 0;

swordLengths is an array of the length of the words, while less than the number of
words (or for each word in the line)

The wordTime is the length of the word [swordLengths (corresponding array value)] *
times the letterTime, which we saw before was duration of line(time start - time end
of line) / total letters in the line.

Then this is put relative to the starting timecode of the time start of the line. I think he
multiplied by 1000 because his hypertranscript takes milliseconds, becauses it uses
jplayer. While if you use videojs then it would be in seconds.

111

 for (var si=0, sl=swords.length; si<sl; ++si) {
 var wordTime = swordLengths[si]*letterTime;
 var stime;
 if (wordLengthSplit) {
 stime = Math.round((sub.start + si*stimeStep) * 1000);
 } else {
 stime = Math.round((wordStart + sub.start) * 1000);
 }

String interpolation to generate HTML

 wordStart = wordStart + wordTime;
 var stext = swords[si];
 outputString += ''+stext+'';

16.1.4. Refactoring in ruby

 def convert_srt_to_word_accurate_hypertranscript(srt_string)
 file = SRT::File.parse(srt_string)
 srt_hash=[]
 line_number = 1
 file.lines.each do |line|
 # array of words in the line
 words_in_a_line = line.text.join(" ").split(" ")

 puts "words_array_size: "+words_in_a_line.size.to_s

 number_of_words_in_line = words_in_a_line.size
 #duration of line time start - time end
 line_duration = line.end_time - line.start_time

 #the duration of the line divided by the number of words in the line
 # time increment
 average_word_duration = line_duration / number_of_words_in_line

 # to calculate the number of letters in a sentence
 number_of_letters_in_a_sentence =0
 # we loop through the array of words, and add up the size of each word
 words_in_a_line.each do |word|
 number_of_letters_in_a_sentence += word.size
 end

 duration_for_each_letter = line_duration / number_of_letters_in_a_sentence
 word_start_time = 0
 word_counter =0

112

 one_line_array_or_words =[]
 words_in_a_line.each do |word|

 # word duration is equal to number of letters
 word_duration = word.size * average_word_duration
 word_start_time = line.start_time + word_counter * average_word_duration
 # word_time = average_word_duration line.start_time

 # word_start_time += word_duration + word_time
 word_end_time = word_start_time+word_duration
 corresponding_word = line.text.join(" ").split(" ")[word_counter]

 word_hash ={}
 word_hash['tc_in'] = word_start_time.to_f
 word_hash['tc_out'] = word_end_time.to_f
 word_hash['word']= corresponding_word.to_s

 one_line_array_or_words << word_hash

 word_counter +=1
 end
 srt_hash << one_line_array_or_words
 one_line_array_or_words =[]
 line_number +=1
 end
 return srt_hash

 end

113

17. SELENIUM AUTOMATED TEST OF VIDEO
UPLOAD.

17.1.1. Overview of how selenium works

firs you need to install running this command from terminal

$ gem install selenium-webdriver

if running within rails you can then add the gem to the gem file of the application.

gem 'selenium-webdriver', '~> 2.47.1'

basics

The following code shows how selenium was initialized, and basics of it’s working.

require 'selenium-webdriver'
a firefox driver is initialized
driver = Selenium::WebDriver.for :firefox
it is set to navigate to the given url
driver.navigate.to "http://pietrosmagicdomain.com:3000"

...

select an element by id to then click it, the video upload element in the nav bar in th
is case
new_video_uplaod = driver.find_element(:id => "newVideoUpload")
new_video_uplaod.click()
#some more code testing
...
closing the Firefox instance
driver.quit

In other words, first the Selenium web-driver is required, then the web driver
initializes a driver, which is an object that simulates a Firefox instantiate, as specified
on that line

navigate.to is then used to open a URL.

HTML elements can be selected using the find_element method. Then when the
element you select is a form field the method send_keys takes a string as an
argument and is used to fill in the field.

.submit or .click() can then be used to submit the form.

driver.quit closes the Firefox instance when the script has terminated.

114

A Ruby Selenium script can be saved as a ruby .rb file such as selenium.rb. This can
then run from terminal, by navigating to the folder that contains it and run it using
following command.

$ ruby selenium.rb

17.1.2. Selenium Test

require 'test_helper'
to run the test, from terminal in root of application:
and make sure local MySql db is turned on for testing (from os x system preference
s)
rake test test/models/video_test.rb

class VideoTest < ActiveSupport::TestCase

 test "should not save video without title" do
 video = Video.new
 assert_not video.save, "Saved the video without a title"
 end

 test "should not save video without video file, media" do
 video = Video.new(title: "Test Video")
 assert_not video.save, "Saved the video without a video file"
 end

 test "Should save a video, with a valid video file attachment" do
 # Sample video attachment
 def sample_video_file(filename = "test_video.mp4")
 File.new("test/selenium/#{filename}")
 end
 @video = Video.new(title: "Test Video")
 @video.media = sample_video_file("test_video.mp4")
 assert @video.save, "Saved the video with a video file"
 end

 test "Should convert srt string into hyperTranscript data structure" do
 # Sample video attachment
 def sample_video_file(filename = "test_video.mp4")
 File.new("test/selenium/#{filename}")
 end
 # open sample srt file, and returns it's content as a String
 def sample_srt_file(filename = "Kyle_captions.srt")
 data = ""
 file = File.open("test/srt_test_file/#{filename}", "r")
 file.each_line do |line|
 data += line
 end
 return data
 end
 # regex made using http://www.regexr.com/
 # HyperTranscript data structure example
 # [[{"tc_in"=>0.049, "tc_out"=>1.1656666666666666, "word"=>"God"}, {"tc_in"=>0.421222222222222
2, "tc_out"=>3.399, "word"=>"maintain"}, {"tc_in"=>0.7934444444444445, "tc_out"=>1.16566666666666
66, "word"=>"I"}, {"tc_in"=>1.1656666666666666, "tc_out"=>2.2823333333333333, "word"=>"and"}, {"tc

115

_in"=>1.5378888888888889, "tc_out"=>3.026777777777778, "word"=>"Kyle"}, {"tc_in"=>1.9101111111
11111, "tc_out"=>3.399, "word"=>"show"}, {"tc_in"=>2.2823333333333333, "tc_out"=>3.771222222222
2223, "word"=>"from"}, {"tc_in"=>2.6545555555555556, "tc_out"=>6.004555555555555, "word"=>"Lewi
stown"}, {"tc_in"=>3.026777777777778, "tc_out"=>5.632333333333333, "word"=>"Montana"}], [{"tc_in"=
>3.399, "tc_out"=>6.5, "word"=>"atomic"}, {"tc_in"=>3.9158333333333335, "tc_out"=>7.5336666666666
67, "word"=>"Western"}, {"tc_in"=>4.432666666666667, "tc_out"=>7.533666666666667, "word"=>"calle
d"}, {"tc_in"=>4.9495000000000005, "tc_out"=>8.567333333333334, "word"=>"Bochner"}, {"tc_in"=>5.4
66333333333333, "tc_out"=>8.0505, "word"=>"since"}, {"tc_in"=>5.983166666666667, "tc_out"=>8.050
500000000001, "word"=>"2008"}],...]
 hyperTranscript_regex = /(\[?(\[(\{(("\w+'?\/?-?\w+"=>(\d+\.\d+|"\w+'?\/?-?\w*"))[,\]*)+\}(,? ?))+\]?,?\ ?)\]
?)*/
 video = Video.new(title: "Test Video")
 video.media = sample_video_file("test_video.mp4")
 video.save
 assert_match hyperTranscript_regex, video.convert_srt_to_word_accurate_hypertranscript(sample_s
rt_file("Kyle_captions.srt")).to_s, "Matches HyperTranscript Regex"
 # assert_match /\[#{word}/ , video.convert_srt_to_word_accurate_hypertranscript(sample_srt_file("Kyl
e_captions.srt"))
 end

 test "Should save HyperTranscript to database" do
 # Sample video attachment
 def sample_video_file(filename = "test_video.mp4")
 File.new("test/selenium/#{filename}")
 end
 #sample srt file content String
 def sample_srt_file(filename = "Kyle_captions.srt")
 File.new("test/srt_test_file/#{filename}")
 end
 video = Video.new(title: "Test Video")
 video.media = sample_video_file("test_video.mp4")
 video.save
 hyperTranscript = video.convert_srt_to_word_accurate_hypertranscript(sample_srt_file("Kyle_caption
s.srt"))
 video.save_to_db(hyperTranscript)
 assert video.transcriptions.exists?
 end

end

116

18. USING MULTIPACK IN HEROKU DEPLOYMENT
TO INSTALL FFMPEG
To deploy onto Heroku we need to make sure it has Ruby and FFMPEG installed on
it, this can be done using heroku buildpacks. Normally you can only install one
buildpack at a time, so to install more then one you need to use multibuildpack.

The file .buildpacks contains the buildpacks you want to install.

these buildpacks install Ruby and ffmpeg on the Heroku server
visit this url for more info https://github.com/shunjikonishi/heroku-buildpack-ffmpeg
https://github.com/brooks/heroku-buildpack-ffmpeg-x264
https://github.com/heroku/heroku-buildpack-ruby.git

Then running

$ heroku buildpacks:set https://github.com/ddollar/heroku-buildpack-multi.git

sets the buildpack from the .buildpacks file to your Heroku application.

this can also be done when creating the application using

$ heroku create getquickquote --buildpack https://github.com/pietrop/heroku-buildpa
ck-multi

For more information on heroku buildpacks see
https://devcenter.heroku.com/articles/buildpacks

117

19. BIBLIOGRAPHY
Al Jazeera staff, 2013. Deconstructing Obama’s States of the Union - Al Jazeera
English. Available at:
http://www.aljazeera.com/indepth/interactive/2013/02/201321213243145814.html
[Accessed August 17, 2015].

AlchemyAPI Inc, 2015a. A sdk for AlchemyAPI using Ruby. Available at:
https://github.com/AlchemyAPI/alchemyapi_ruby [Accessed August 25, 2015].

AlchemyAPI Inc, 2015b. AlchemyAPI Powering the New AI Economy. Available at:
http://www.alchemyapi.com/ [Accessed August 24, 2015].

Alex Fletcher, 2014. The story of Cassetteboy: The kings of the YouTube funny cut-
up video. Digital Spy. Available at:
http://www.digitalspy.co.uk/displayarticle.php?id=615489 [Accessed August 17,
2015].

BBC R&D, 2011a. BBC Snippets. Available at:
https://snippets.bbcredux.com/welcome/ [Accessed August 25, 2015].

BBC R&D, 2011b. Snippets - Projects - BBC R&D. Available at:
http://www.bbc.co.uk/rd/projects/snippets [Accessed August 25, 2015].

Bigg, R. et al., 2015. Rails 4 in Action 2 edition., Manning Publications.

Brightcove Inc, 2010. Videojs. Available at: https://github.com/videojs/video.js
[Accessed August 25, 2015].

cassetteboy, 2006. Cassetteboy YouTube Channel. Available at:
https://www.youtube.com/user/cassetteboy [Accessed August 25, 2015].

CNN, 2015. Donald Trump’s best lines during his 2016 speech - CNN Video.
Available at: http://www.cnn.com/videos/tv/2015/06/16/donald-trump-presidential-
announcement-supercut-tsr-vo.cnn [Accessed August 24, 2015].

Elliot Bentley, 2013. oTranscribe. Available at: http://otranscribe.com/ [Accessed
August 25, 2015].

Elmaani LLC, 2009. Summarize Articles, Editorials and Essays Automatically.
Available at: http://smmry.com/ [Accessed August 24, 2015].

Eric Ries, 2011. The Lean Startup: How Constant Innovation Creates Radically
Successful Businesses: Amazon.co.uk: Eric Ries: 9780670921607: Books. Available
at: http://www.amazon.co.uk/Lean-Startup-Innovation-Successful-
Businesses/dp/0670921602/ref=sr_1_1?ie=UTF8&qid=1440440442&sr=8-
1&keywords=lean+startup [Accessed August 24, 2015].

118

FFmpeg team, 2000. FFmpeg. Available at: https://www.ffmpeg.org/ [Accessed
August 25, 2015].

Google YouTube, 2015a. YouTube API v2.0 – Captions. Available at:
https://developers.google.com/youtube/2.0/developers_guide_protocol_captions
[Accessed August 25, 2015].

Google YouTube, 2015b. YouTube data API Captions. Available at:
https://developers.google.com/youtube/v3/docs/captions [Accessed August 25,
2015].

Happyworm LTD, 2009. jPlayer HTML5 Audio and Video for jQuery. Available at:
http://jplayer.org/ [Accessed August 25, 2015].

HM Treasury and The Rt Hon George Osborne MP, 2015. Chancellor George
Osborne’s Summer Budget 2015 speech - Speeches - GOV.UK. Available at:
https://www.gov.uk/government/speeches/chancellor-george-osbornes-summer-
budget-2015-speech [Accessed August 25, 2015].

Igor Szoke, 2015. Your Speech-to-Text all in Cloud SpokenData. Available at:
http://spokendata.com/ [Accessed August 25, 2015].

jQuery Team, 2006. jQuery. Available at: https://jquery.com/ [Accessed August 25,
2015].

Julik Tarkhanov, 2009. Timecode module. Available at: http://guerilla-di.org/timecode/
[Accessed August 25, 2015].

Kevin Sawicki, 2015. Atom Shell is now Electron. Atom. Available at:
http://blog.atom.io/2015/04/23/electron.html [Accessed August 25, 2015].

Madalina Ciobanu, 2015. 5 innovative ideas for digital journalism from Build The
News. Available at: https://www.journalism.co.uk/news/5-digital-storytelling-ideas-
from-build-the-news/s2/a564659/ [Accessed August 25, 2015].

Marb Boas, 2013. US Election Debate Hyperaudio. Available at:
https://github.com/maboa/uselect [Accessed August 24, 2015].

Mark Boas, 2014. Hyperaudio Hypertranscripts. Available at:
http://hyperaud.io/blog/hypertranscripts [Accessed August 25, 2015].

Mark Boas, 2013a. Hyperaudio Pad. Available at: http://hyperaud.io/pad/ [Accessed
August 17, 2015].

Mark Boas, 2013b. Hyperaudioconverter. Available at:
https://github.com/maboa/hyperaudioconverter [Accessed August 17, 2015].

119

Mark Boas, 2011. Hyperaudiopad. Available at:
https://github.com/maboa/hyperaudiopad [Accessed August 17, 2015].

Mark Boas, 2012. Interactive video of the Obama-Romney rematch - Al Jazeera
English. Available at:
http://www.aljazeera.com/indepth/interactive/2012/10/2012101792225913980.html
[Accessed August 17, 2015].

Maurya, A., 2012. Running Lean 2 edition., Sebastopol, CA: O’Reilly Media.

Mozilla, 2010. Popcornjs. Available at: http://popcornjs.org/ [Accessed August 25,
2015].

Neil Flemming, 2015. Introduction to VARK VARK. Available at: http://vark-
learn.com/introduction-to-vark/ [Accessed August 18, 2015].

NY Times, 2015. New York Times innovation report,

Passarelli, P., 2015. It’s time to rethink how we do “x in quotes” pieces on the web:
NY Times, BuzzFeed, The Guardian, BBC. Medium. Available at:
https://medium.com/digital-times/it-s-time-to-rethink-how-we-do-x-in-quotes-pieces-
on-the-web-1328f1ccf039 [Accessed August 24, 2015].

Passarelli Pietro, 2015a. autoEdit. Available at: http://www.autoedit.io/ [Accessed
August 17, 2015].

Passarelli Pietro, 2015b. autoEdit COMPGC18 Entrepreneurship Theory and
Practice,

Passarelli Pietro, 2015c. autoEdit, digital paper-editing - Tips Tricks & Quick Fix.
Available at: http://pietropassarelli.com/autoEdit.html [Accessed August 25, 2015].

Passarelli Pietro, 2015d. Interactive databate #buildTheNews · Tips Tricks & Quick
Fix. Available at: http://pietropassarelli.com/buildTheNews.html [Accessed August 25,
2015].

Passarelli Pietro, 2013. Rails Overview. prezi.com. Available at:
https://prezi.com/bzrh_54z119l/rails-overview/ [Accessed August 25, 2015].

Passarelli Pietro, Striesow Axel & Start Sami, 2015. GC02 - App Design Software
Engineering Report,

saaaam, 2014. What I can tell you. Available at:
https://www.youtube.com/watch?v=D7pymdCU5NQ [Accessed August 25, 2015].

Sam Lavigne, 2014a. Audiogrep. Available at:
https://github.com/antiboredom/audiogrep [Accessed August 25, 2015].

120

Sam Lavigne, 2014b. Videogrep. Available at:
https://github.com/antiboredom/videogrep [Accessed August 25, 2015].

Sam Lavigne, 2014c. Videogrep Automatic Supercuts with Python. Sam Lavigne
Blog. Available at: http://lav.io/2014/06/videogrep-automatic-supercuts-with-python/
[Accessed August 25, 2015].

The Sphinx group Carnegie Mellon University, 2015a. CMU Sphinx. Available at:
http://cmusphinx.sourceforge.net/ [Accessed August 25, 2015].

The Sphinx group Carnegie Mellon University, 2015b. Pocketsphinx. Available at:
https://github.com/cmusphinx/pocketsphinx [Accessed August 25, 2015].

Thomas Park, 2014. Bootswatch. Available at:
https://github.com/thomaspark/bootswatch [Accessed August 25, 2015].

Thorsten Pehl, Thorsten Dresing, 2013. F4analyse - type, code, comment and
analyze your interviews. Available at: https://www.audiotranskription.de/english/f4-
analyse [Accessed August 25, 2015].

Thorsten Pehl, Thorsten Dresing, 2010. F4transkript - speeds up your transcription
audiotranscription.de. Available at: https://www.audiotranskription.de/english/f4.htm
[Accessed August 25, 2015].

thoughtbot, 2008. Paperclip. Available at: https://github.com/thoughtbot/paperclip
[Accessed August 25, 2015].

Times Digital, 2013. Doctop. Available at: https://github.com/times/doctop [Accessed
August 25, 2015].

Twitter, 2012. Bootstrap · The world’s most popular mobile-first and responsive front-
end framework. Available at: http://getbootstrap.com/ [Accessed August 25, 2015].

Winder, R., Roberts, G. & Winder, R., 2006. Developing Java Software 3rd Edition
edition., Chichester, UK ; Hoboken, NJ: John Wiley & Sons.

Zulko, 2014. MoviePy. Available at: https://github.com/Zulko/moviepy [Accessed
August 25, 2015].

Ændrew Rininsland, 2013. Obituary Nelson Mandela 1918-2013 The Times.
Available at: http://thetim.es/lifeofmandela [Accessed Augusst 25, 2015].

